...
首页> 外文期刊>Combustion and Flame >Combustion reaction kinetics of biodiesel/n-butanol blends: Experiments in an ultrahigh-pressure rapid compression machine
【24h】

Combustion reaction kinetics of biodiesel/n-butanol blends: Experiments in an ultrahigh-pressure rapid compression machine

机译:Combustion reaction kinetics of biodiesel/n-butanol blends: Experiments in an ultrahigh-pressure rapid compression machine

获取原文
获取原文并翻译 | 示例
           

摘要

Burning oxygenated hydrocarbon biofuels in engines is a viable path for saving energy and reducing carbon emissions. N-butanol and biodiesel are two representative biofuels and have attracted widespread interest. In this study, the blends of n-butanol and biodiesel (a waste cooking oil) with different n-butanol ratios (40, 60, 80 by volume) were adopted to study their autoignition characteristics in a newly developed ultrahigh-pressure rapid compression machine. The ignition delay times of the blends were precisely measured under wide pressures of 10/20/40/60 bar, equivalence ratios of 0.3/0.5/1.0, and a temperature range of 700-970 K. Experimental results show that the ignition delay time decreases with the increase of pressure and equivalence ratio at the investigated conditions regardless the blending ratios. It is also found that the ignition delay time becomes slightly longer with the increasing n-butanol ratio in the blends at temperatures below 820 K. However, as the temperature further increases, the ignition delay times of different blends get closer and has a crossover tendency. The composition of the biodiesel was quantitively analyzed and a surrogate fuel was developed. An optimized mechanism was proposed based on a documented detailed mechanism with 461 species and 18,217 reactions. Simulation results show that the optimized mechanism better captures the dependence of the measured ignition delay times on temperature, pressure, and blending ratios over the entire temperature range compared to the original mechanism. In the end, species evolution and sensitivity analysis were performed sequentially with the optimized mechanism to give kinetics insight into the chemical interaction between biodiesel and n-butanol. The experimental data and modeling results reported here provide a basis for understanding the combustion reaction kinetics of biodiesel/n-butanol blending fuels. (C) 2022 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号