首页> 外文期刊>International journal of hydrogen energy >Thermomechanical stability and inelastic energy dissipation as durability criteria for fuel cell gas diffusion media with pre-assembly effects
【24h】

Thermomechanical stability and inelastic energy dissipation as durability criteria for fuel cell gas diffusion media with pre-assembly effects

机译:热机械稳定性和非弹性能量耗散作为具有预装配效应的燃料电池气体扩散介质的耐久性标准

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this article, pre-assembly hot-press pressure and thermal expansion effects in gas diffusion layers (GDLs) are addressed to explore the practicalities of the constitutive model reported in the companion article. A facile technique is proposed to include deformation history dependent residual strain effects. The model is implemented in the numerical environment and compared with widely followed conventional models such as isotropic and orthotropic material models. With the normal and accelerated thermal expansion effects no significant variation in stresses or strains is reported with the compressible GDL model in contrast to the conventional incompressible form of the GDL model. The present work identifies the critical differences with advanced and extended variants of the model along with conventional GDL material models in terms of planar stress/strain distribution and the membrane response. Finally, the model is simulated for micro-cyclic stress loads of varying amplitudes that imitate the real working conditions of fuel cell. The inelastic energy dissipation in GDLs is predicted using the proposed model, which is utilized further to distinguish the safe (elastic) and unsafe (inelastic shakedown) operating limits. The inelastic collapse of GDLs is shown to be a active function of high amplitude micro-cyclic load with high initial clamping load. (c) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:本文讨论了气体扩散层 (GDL) 中的预装配热压压力和热膨胀效应,以探索配套文章中报道的本构模型的实用性。提出了一种简单的技术,包括变形历史相关的残余应变效应。该模型在数值环境中实现,并与广为应用的传统模型(如各向同性和正交各向异性材料模型)进行了比较。在正常和加速热膨胀效应下,与传统的不可压缩形式的GDL模型相比,可压缩GDL模型的应力或应变没有显著变化。本工作确定了该模型的高级和扩展变体以及传统GDL材料模型在平面应力/应变分布和膜响应方面的关键差异。最后,模拟了模拟燃料电池真实工况的不同振幅的微循环应力载荷模型。利用所提出的模型预测了GDLs中的非弹性能量耗散,并进一步用于区分安全(弹性)和不安全(非弹性抖动)操作极限。GDLs的非弹性塌陷是高振幅微循环载荷和高初始夹紧载荷的主动函数。(c) 2021 Hydrogen Energy Publications LLC.,由爱思唯尔有限公司出版。保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号