首页> 外文期刊>Combustion and Flame >Plasma assisted combustion of methane-air mixtures: Validation and reduction
【24h】

Plasma assisted combustion of methane-air mixtures: Validation and reduction

机译:Plasma assisted combustion of methane-air mixtures: Validation and reduction

获取原文
获取原文并翻译 | 示例
       

摘要

? 2022 The Combustion InstituteFor several years now plasma assisted combustion has been the subject of intense research due to stabilization effects a plasma can have on flames. Particularly, experiments have shown the promising impact of Nanosecond Repetitively Pulsed discharges on combustion while not exceeding an energy consumption of a few percent of the flame power. In this work, an incremental methodology with a step-by-step approach has been used to build a single plasma mechanism upon which combustion is added using the GRI 3.0 and Konnov v0.6. The methodology focuses on three key aspects of plasma assisted combustion: fast gas heating, slow gas heating and radical production. Selected experiments focusing on one or more of these aspects allow to validate the mechanism in large ranges of temperature (300-1500 K) and pressure (0.1-1 bar) in air, methane-air and argon diluted mixtures using glow and spark discharges. These experiments include a plasma assisted ignition case on which the ignition delay time is well captured by the mechanism. Slow gas heating has been modeled using a vibrational relaxation model validated against a detailed vibrational description. Discussions on ambiguous rates for critical reactions of excited nitrogen quenching are made in the light of their impact on the results on the chosen experiments. Finally, the resulting 100-species GRI 3.0-based and 264-species Konnov v0.6-based plasma mechanisms are reduced to make them suitable for multi-dimensional simulations. The DRGEP reduction method, based on plasma experiments and canonical combustion cases, is applied allowing to reduce the number of species by a factor larger than two. For the GRI-3.0 plasma mechanism, the reduced mechanism contains 47 species and 429 reactions. Hence significant performance is gained, opening the way to multi-dimensional simulations of plasma assisted combustion.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号