...
首页> 外文期刊>International journal of hydrogen energy >Phosphosilicate nano-network (PPSN)-Polybenzimidazole (PBI) composite electrolyte membrane for enhanced proton conductivity, durability and power generation of HT-PEMFC
【24h】

Phosphosilicate nano-network (PPSN)-Polybenzimidazole (PBI) composite electrolyte membrane for enhanced proton conductivity, durability and power generation of HT-PEMFC

机译:Phosphosilicate nano-network (PPSN)-Polybenzimidazole (PBI) composite electrolyte membrane for enhanced proton conductivity, durability and power generation of HT-PEMFC

获取原文
获取原文并翻译 | 示例

摘要

Here we report a composite electrolyte membrane of Polybenzimidazole (PBI) with Phosphosilicate nano-network (PPSN) for enhanced proton conductivity, durability and power generation of high temperature polymer electrolyte membrane fuel cell (HT-PEMFC). Solid state proton conductor three dimensional Phosphosilicate nano-network (average particle size <10 nm) is synthesized using easy and low-cost sol gel method followed by ball milling and composited with PBI at different loading employing methane sulfonic acid (MSA) as solvent. The electrolyte membrane is characterized using FESEM, XRD, FTIR, TGA; proton conductivity, ion exchange capacity, water uptake and acid doping level, chemical stability and mechanical yield strength are measured and the membrane is tested for HT-PEMFC application. Property and performance mapping reveals that with 10 PPSN loading, composite (PPSN-PBI-10) membrane offers the maximum enhancement of all properties and power generation of HT-PEMFC, while beyond a critical loading (similar to 22) properties and performance deteriorate below that of pristine PBI. Using optimum loading of PPSN, compared to pristine PBI, a remarkable rise in water uptake and acid doping level is achieved that facilitates proton conduction; also in spite of the presence of Phosphoric acid in the PPSN filler, the maximum 47.5 enhancement of ultimate strength is attained. The performance of HT-PEMFC using composite PPSN-PBI unveil that almost 2 times (100) enhancement of peak power generation (similar to 0.73 W cm(-2)) is achieved using PPSN-PBI-10 at 170 degrees C operating temperature compared to pristine PBI. This may be attributed to the facilitated proton conduction through the extended tunnelling network offered by PPSN. Incorporation of PPSN improves the durability; over 48 h only 16 decay in voltage is noticed using PPSN-PBI-10 membrane which is remarkably lower than the 31 decay of pristine PBI membrane. (C) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号