...
首页> 外文期刊>Applied physics letters >Electrically tunable Gilbert damping in van der Waals heterostructures of two-dimensional ferromagnetic metals and ferroelectrics
【24h】

Electrically tunable Gilbert damping in van der Waals heterostructures of two-dimensional ferromagnetic metals and ferroelectrics

机译:Electrically tunable Gilbert damping in van der Waals heterostructures of two-dimensional ferromagnetic metals and ferroelectrics

获取原文
获取原文并翻译 | 示例
           

摘要

Tuning the Gilbert damping of ferromagnetic (FM) metals via a nonvolatile way is of importance to exploit and design next-generation novel spintronic devices. Through systematical first-principles calculations, we study the magnetic properties of the van der Waals heterostructure of two-dimensional FM metal CrTe2 and ferroelectric (FE) In2Te3 monolayers. The ferromagnetism of CrTe2 is maintained in CrTe2/In2Te3 and its magnetic easy axis can be switched from in-plane to out-of-plane by reversing the FE polarization of In2Te3. Excitingly, we find that the Gilbert damping of CrTe2 is tunable when the FE polarization of In2Te3 is reversed from upward to downward. By analyzing the k-dependent contributions to the Gilbert damping, we unravel that such tunability results from the changed intersections between the bands of CrTe2 and Fermi level on the reversal of the FE polarizations of In2Te3 in CrTe2/In2Te3. Our work provides an appealing way to electrically tailor Gilbert dampings of two-dimensional FM metals by contacting them with ferroelectrics.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号