...
首页> 外文期刊>Computational intelligence and neuroscience >Optimal Superpixel Kernel-Based Kernel Low-Rank and Sparsity Representation for Brain Tumour Segmentation
【24h】

Optimal Superpixel Kernel-Based Kernel Low-Rank and Sparsity Representation for Brain Tumour Segmentation

机译:Optimal Superpixel Kernel-Based Kernel Low-Rank and Sparsity Representation for Brain Tumour Segmentation

获取原文
获取原文并翻译 | 示例

摘要

Given the need for quantitative measurement and 3D visualisation of brain tumours, more and more attention has been paid to the automatic segmentation of tumour regions from brain tumour magnetic resonance (MR) images. In view of the uneven grey distribution of MR images and the fuzzy boundaries of brain tumours, a representation model based on the joint constraints of kernel low-rank and sparsity (KLRR-SR) is proposed to mine the characteristics and structural prior knowledge of brain tumour image in the spectral kernel space. In addition, the optimal kernel based on superpixel uniform regions and multikernel learning (MKL) is constructed to improve the accuracy of the pairwise similarity measurement of pixels in the kernel space. By introducing the optimal kernel into KLRR-SR, the coefficient matrix can be solved, which allows brain tumour segmentation results to conform with the spatial information of the image. The experimental results demonstrate that the segmentation accuracy of the proposed method is superior to several existing methods under different indicators and that the sparsity constraint for the coefficient matrix in the kernel space, which is integrated into the kernel low-rank model, has certain effects in preserving the local structure and details of brain tumours.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号