首页> 外文期刊>Global change biology >Elemental stoichiometry of the key calcifying marine phytoplankton Emiliania huxleyi under ocean climate change: A meta‐analysis
【24h】

Elemental stoichiometry of the key calcifying marine phytoplankton Emiliania huxleyi under ocean climate change: A meta‐analysis

机译:海洋气候变化下关键钙化海洋浮游植物Emiliania huxleyi的元素化学计量:荟萃分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Abstract The elemental composition of marine microorganisms (their C:N:P ratio, or stoichiometry) is central to understanding the biotic and biogeochemical processes underlying key marine ecosystem functions. Phytoplankton C:N:P is species specific and flexible to changing environmental conditions. However, bulk or fixed phytoplankton stoichiometry is usually assumed in biogeochemical and ecological models because more realistic, environmentally responsive C:N:P ratios have yet to be defined for key functional groups. Here, a comprehensive meta‐analysis of experimental laboratory data reveals the variable C:N:P stoichiometry of Emiliania huxleyi, a globally significant calcifying phytoplankton species. Mean C:N:P of E. huxleyi is 124C:16N:1P under control conditions (i.e. growth not limited by one or more environmental stressors) and shows a range of responses to changes in nutrient and light availability, temperature and pCO2. Macronutrient limitation caused strong shifts in stoichiometry, increasing N:P and C:P under P deficiency (by 305 and 493 respectively) and doubling C:N under N deficiency. Responses to light, temperature and pCO2 were mixed but typically shifted cellular elemental content and C:N:P stoichiometry by ca. 30 or less. Besides these independent effects, the interactive effects of multiple environmental changes on E. huxleyi stoichiometry under future ocean conditions could be additive, synergistic or antagonistic. To synthesise our meta‐analysis results, we explored how the cellular elemental content and C:N:P stoichiometry of E. huxleyi may respond to two hypothetical future ocean scenarios (increased temperature, irradiance and pCO2 combined with either N deficiency or P deficiency) if an additive effect is assumed. Both future scenarios indicate decreased calcification (which is predominantly sensitive to elevated pCO2), increased C:N, and up to fourfold shifts in C:P and N:P. Our results strongly suggest that climate change will significantly alter the role of E. huxleyi (and potentially other calcifying phytoplankton species) in marine biogeochemical processes.
机译:摘要 海洋微生物的元素组成(C:N:P比或化学计量)是理解海洋生态系统关键功能背后的生物和生物地球化学过程的核心。浮游植物C:N:P具有物种特异性,对不断变化的环境条件具有灵活性。然而,在生物地球化学和生态模型中通常假设大量或固定浮游植物化学计量,因为尚未为关键官能团定义更现实的、对环境敏感的 C:N:P 比率。在这里,对实验实验室数据的综合荟萃分析揭示了全球重要的钙化浮游植物物种 Emiliania huxleyi 的可变 C:N:P 化学计量。在控制条件下(即生长不受一种或多种环境胁迫因素限制),胡胥黎的平均C:N:P为124C:16N:1P,并显示出对养分和光可用性、温度和pCO2变化的一系列反应。宏量营养素的限制导致化学计量的强烈变化,缺磷时氮磷和碳磷增加(分别增加305%和493%),缺氮时碳氮增加一倍。对光、温度和pCO2的响应是混合的,但通常将细胞元素含量和C:N:P化学计量变化约30%或更少。除了这些独立效应外,未来海洋条件下多种环境变化对赫胥黎化学计量的交互作用可能是相加的、协同的或拮抗的。为了综合我们的荟萃分析结果,我们探讨了如果假设累加效应,赫胥黎大肠杆菌的细胞元素含量和 C:N:P 化学计量如何响应两种假设的未来海洋情景(温度升高、辐照度和 pCO2 结合缺氮或缺磷)。两种未来情景都表明钙化减少(主要对 pCO2 升高敏感),C:N 增加,C:P 和 N:P 变化高达 4 倍。我们的研究结果强烈表明,气候变化将显着改变赫胥黎大肠杆菌(以及潜在的其他钙化浮游植物物种)在海洋生物地球化学过程中的作用。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号