首页> 外文期刊>Journal of Materials Science >Surface grain boundary engineering in 304 stainless steel by means of mechanical grinding treatment-induced gradient plastic strain and annealing
【24h】

Surface grain boundary engineering in 304 stainless steel by means of mechanical grinding treatment-induced gradient plastic strain and annealing

机译:304不锈钢表面晶界工程采用机械磨削处理诱导梯度塑性应变和退火

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Grain boundary engineering (GBE) has shown a promising application in improving resistance to intergranular corrosion (IGC) of polycrystalline metallic materials with low-stacking fault energy, such as austenitic stainless steels. However, the traditionally uniform plastic pre-straining methods, such as cold rolling, in thermomechanical processing are hard to implement on complicated surfaces. Here, we demonstrate a novel approach using gradient plastic strain induced by surface mechanical grinding treatment with a rotary tool and subsequent annealing to optimize grain boundary character distribution (GBCD) in the near-surface layer. The gradient plastic strain followed by long-time annealing (24-96 h) in 304 stainless steels achieved an optimized GBCD with over 75 frequency of coincidence site lattice (CSL) boundaries and disconnected random boundary network in the near-surface layer. The intergranular corrosion tests showed that the resulting 304 stainless steels with the optimized GBCD in the near-surface layer present an excellent resistance to IGC behavior due to a high fraction of ET' boundaries. During the annealing process, severe plastic strain near the surface results in small size grain clusters via strain recrystallization, while low-level plastic strain in the subsurface promotes the formation of high fraction of CSL boundaries and large size grain clusters via strain-induced boundary migration. After the complete depletion of gradient plastic strain, the directional growth of grain clusters promotes the further extension of surface GBE into interior region. Thus, the thickness of surface GBE region can be regulated by the annealing time.
机译:晶界工程(GBE)在提高低堆积断层能量的多晶金属材料(如奥氏体不锈钢)的抗晶间腐蚀(IGC)方面显示出广阔的应用前景。然而,在热机械加工中,传统上均匀的塑性预应变方法(如冷轧)很难在复杂的表面上实现。在这里,我们展示了一种新方法,使用旋转工具进行表面机械磨削处理和随后的退火诱导梯度塑性应变来优化近表面层中的晶界特征分布(GBCD)。在304不锈钢中,梯度塑性应变和长时间退火(24-96 h)实现了优化的GBCD,重合位点晶格(CSL)边界频率超过75%,近表面层的随机边界网络断开。晶间腐蚀测试表明,由于ET'边界的比例较高,在近表面层中具有优化GBCD的304不锈钢对IGC行为具有优异的抵抗力。在退火过程中,表面附近的严重塑性应变通过应变再结晶产生小尺寸晶簇,而次表面的低水平塑性应变通过应变诱导的边界迁移促进了高比例CSL边界和大尺寸晶簇的形成。梯度塑性应变完全耗尽后,晶粒团簇的定向生长促进了表面GBE向内部区域的进一步延伸。因此,表面GBE区域的厚度可以通过退火时间来调节。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号