...
首页> 外文期刊>International journal of hydrogen energy >Simulation of electric field control effects on the ion transport in proton exchange membranes for application in fuel cells and electrolysers
【24h】

Simulation of electric field control effects on the ion transport in proton exchange membranes for application in fuel cells and electrolysers

机译:Simulation of electric field control effects on the ion transport in proton exchange membranes for application in fuel cells and electrolysers

获取原文
获取原文并翻译 | 示例

摘要

The dynamic controllability of the fuel cell could be improved by the addition of an electric field modifier (EFM), to selectively boost or attenuate the flux of protons through the membrane and, thereby, influence cell performance. This approach follows the commonly accepted idea of the potential gradient across the membrane being the main driving force behind the proton transport in the membrane. To evaluate the applicability of the idea, a simulation model for a membrane with an integrated EFM is developed to study the effects on the membrane behaviour. First, a modified Poisson-Boltzmann-Model (1D) is developed to characterise the capacitive behaviour of the double layer at the EFM. The approach considers steric restrictions in the membrane pores to estimate the double layer capacitance and the range of the effect at the EFM. Second, the characteristic behaviour of the capacitance is implemented in a secondary current distribution model (2D) as a variable capacitance. In transient simulations, boost of the cell current by up to 82 and attenuation up to a complete reversal of the direction compared to the stationary operation are achieved. Thus, it was possible to show the potential of EFMs to influence the characteristics of fuel cells and electrolysers during transient operation. (c) 2021 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号