首页> 外文期刊>Boundary-layer Meteorology >Local Wind Regime Induced by Giant Linear Dunes: Comparison of ERAS-Land Reanalysis with Surface Measurements
【24h】

Local Wind Regime Induced by Giant Linear Dunes: Comparison of ERAS-Land Reanalysis with Surface Measurements

机译:Local Wind Regime Induced by Giant Linear Dunes: Comparison of ERAS-Land Reanalysis with Surface Measurements

获取原文
获取原文并翻译 | 示例
           

摘要

Emergence and growth of sand dunes results from the dynamic interaction between topography, wind flow and sediment transport. While feedbacks between these variables are well studied at the scale of a single and relatively small dune, the average effect of a periodic large-scale dune pattern on atmospheric flows remains poorly constrained, due to a pressing lack of data in major sand seas. Here, we compare local measurements of surface winds to the predictions of the ERA5-Land climate reanalysis at four locations in Namibia, both within and outside the giant linear dune field of the Namib Sand Sea. In the desert plains to the north of the sand sea, observations and predictions agree well. This is also the case in the interdune areas of the sand sea during the day. During the night, however, an additional wind component aligned with the giant dune orientation is measured, in contrast to the easterly wind predicted by the ERAS-Land reanalysis. For the given dune orientation and measured wind regime, we link the observed wind deviation (over 50 degrees) to the daily cycle of the turbulent atmospheric boundary layer. During the night, a shallow boundary layer induces a flow confinement above the giant dunes, resulting in large flow deviations, especially for the slower easterly winds. During the day, the feedback of the giant dunes on the atmospheric flow is much weaker due to the thicker boundary layer and higher wind speeds. Finally, we propose that the confinement mechanism and the associated wind deflections induced by giant dunes could explain the development of smaller-scale secondary dunes, which elongate obliquely in the interdune areas of the primary dune pattern.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号