首页> 外文期刊>British Journal of Clinical Pharmacology >Effect of CYP2D6 and CYP2C19 genotypes on atomoxetine serum levels: A study based on therapeutic drug monitoring data
【24h】

Effect of CYP2D6 and CYP2C19 genotypes on atomoxetine serum levels: A study based on therapeutic drug monitoring data

机译:Effect of CYP2D6 and CYP2C19 genotypes on atomoxetine serum levels: A study based on therapeutic drug monitoring data

获取原文
获取原文并翻译 | 示例
       

摘要

Aims Atomoxetine is mainly metabolized by CYP2D6 while CYP2C19 plays a secondary role. It is known that patients carrying genotypes encoding decreased/absent CYP2D6 metabolism obtain higher atomoxetine concentrations and are at increased risk of adverse effects. Here, we aimed to investigate the added effects of reduced‐function CYP2C19 genotype on atomoxetine concentrations in real‐world settings. Methods Serum atomoxetine concentrations and CYP2D6/2C19 genotypes were included from a therapeutic drug monitoring service. Patients were first subgrouped according to CYP2D6 encoding normal, reduced or absent CYP2D6 metabolism, referred to as normal (NM), intermediate (IM) or poor metabolizers (PM). Then, the effect of reduced‐function CYP2C19 genotypes was investigated. Genotyping of the CYP2D6 nonfunctional or reduced variant alleles comprised CYP2D6*3‐*6, *9‐*10 and *41. For CYP2C19, the CYP2C19*2 was analysed to define metabolizer phenotype. Dose‐adjusted serum atomoxetine concentration was the exposure measure. Results Using a patient cohort (n?=?315), it was found that CYP2D6 IM and PM patients had 1.9‐fold (95 confidence interval: 1.4–2.7) and 9.6‐fold (5.9–16) higher exposure of atomoxetine compared with CYP2D6 NMs. CYP2C19*2 carriers had 1.5‐fold (1.1–2.2) higher atomoxetine exposure than noncarriers regardless of CYP2D6 genotype. Conclusion CYP2D6 genotype has a great impact on atomoxetine exposure, where our real‐world data suggest atomoxetine dose requirements to be around half and 1/10 in CYP2D6 IM and PM vs. NM patients, respectively. When adding CYP2C19 genotype as a factor of relevance for personalized atomoxetine dosing, CYP2C19*2 carriers should further reduce the dose by a third. These findings suggest that pre‐emptive CYP2D6/CYP2C19 genotyping should be performed to individualize atomoxetine dosing and prevent adverse effects.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号