首页> 外文期刊>Thin-Walled structures >Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook
【24h】

Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook

机译:Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook

获取原文
获取原文并翻译 | 示例
           

摘要

Lightweight materials and structures have attracted tremendous interests for their compelling advantages in a range of engineering problems that have placed heightened requirements in safety, environment, competitiveness and cost over recent years. As an effective approach, hybrid systems aim to take advantages and characteristics of different materials to maximize their functional roles in lightweight structures, thereby enhancing their respective material efficiency. This article provides a critical review on the advances in hybrid materials and structures for crashworthiness and energy absorption performance, in which fiber reinforced plastic (FRP), metals, cellular fillers and their hybrid configuration are discussed respectively. Attention is paid to the hybridization of different forms of FRP-FRP, FRP-metal, cellular filling materials with FRP structures, thereby demonstrating their constructive characteristics for different design goals. Crashworthiness and energy absorption performances of various hybridized materials, such as carbon fiber reinforced plastic (CFRP), glass fiber reinforced plastic (GFRP), aluminum/steel, metallic foams/honeycombs/lattices, are evaluated and compared in detail. After highlighting the knowledge gaps in existing literatures, this review provides an outlook on the possible future research. It is expected to gain new insights into the design of novel lightweight hybrid configurations for aerospace, automotive, nautical and railway applications.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号