...
首页> 外文期刊>Computational Mechanics: Solids, Fluids, Fracture Transport Phenomena and Variational Methods >A multiscale, data-driven approach to identifying thermo-mechanically coupled laws-bottom-up with artificial neural networks
【24h】

A multiscale, data-driven approach to identifying thermo-mechanically coupled laws-bottom-up with artificial neural networks

机译:一种多尺度、数据驱动的方法,用于使用人工神经网络自下而上地识别热机械耦合定律

获取原文
获取原文并翻译 | 示例

摘要

In this paper a multiscale data-driven approach is developed to model the effective macro-scale thermo-mechanical properties for isotropic, hyperelastic materials, subjected to finite deformation. Two independent artificial neural networks (ANNs) are designed to describe a stress-strain law with temperature dependence, and a heat-conduction law with gradients informed by updated nodal positions. A dimensionless representative volume element (RVE) is designed to generate training data. The ANNs are thus trained offline with this RVE data, to serve as a reliable replacement of classical constitutive equations and macro-scale homogenization, which systematically bypasses the need for their often daunting mathematical formalisms. Our trained ANNs are thus used to drive the online solution of boundary value problems (BVPs) within a commercial finite element (FEM) package. Illustrative examples for homogeneous and heterogeneous microstructures are herein presented, which demonstrate that our approach yields reliable thermo-mechanical predictions, and obtains accurate results when compared against direct numerical simulation (DNS).
机译:本文开发了一种多尺度数据驱动的方法,用于模拟各向同性超弹性材料在有限变形下的有效宏观热机械性能。设计了两个独立的人工神经网络 (ANN) 来描述具有温度依赖性的应力-应变定律,以及具有由更新的节点位置告知梯度的热传导定律。设计了无量纲代表性体积元素 (RVE) 来生成训练数据。因此,ANNs使用这些RVE数据进行离线训练,以作为经典本构方程和宏观尺度同质化的可靠替代品,从而系统地绕过了通常令人生畏的数学形式主义的需求。因此,我们训练有素的人工神经网络用于在商业有限元 (FEM) 包中驱动边界值问题 (BVP) 的在线求解。本文给出了均质和非均质微观结构的说明性示例,表明我们的方法产生了可靠的热机械预测,并与直接数值模拟(DNS)相比获得了准确的结果。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号