...
首页> 外文期刊>Journal of Applied Physics >High resolution in non-destructive testing: A review
【24h】

High resolution in non-destructive testing: A review

机译:High resolution in non-destructive testing: A review

获取原文
获取原文并翻译 | 示例

摘要

Since the beginning of the applications of non-destructive testing/evaluation (NDT/NDE) techniques, efforts have been made consistently to improve their detection sensitivity and resolution. In the present paper, factors governing lateral resolution in three major NDT techniques, viz., ultrasonic testing (UT), x-ray radiographic testing (XRT), and eddy current testing (ECT) are presented. Furthermore, a review of recent advances in these NDT techniques to reach the theoretically achievable resolution limit or even surpassing the same using alternate approaches is also discussed. For example, resolution in UT is theoretically limited to half the wavelength by the Rayleigh limit; however, subwavelength resolutions have been achieved through the applications of near field methods by capturing the evanescent field. On the other hand, the resolution achieved in XRT is primarily limited to half the source/focal spot size, which is many orders of magnitude larger than the wavelength. Over the years, the reduction in the focal spot from macro-focus to micro-focus and now to nano-focus has led to improvement in the resolution to a few nanometers, of course, in combination with suitable magnification required due to detectors with limited pixel size (a few μm to a few 10 s of μm). Similarly, innovations in electromagnetic/magnetic sensors have significantly improved the resolution achieved in ECT. Atomic force microscopy, metamaterials, and artificial neural network-based methods have been employed for obtaining high-resolution NDE images. At the end, authors' perspective toward possible directions for high-resolution NDT is presented.

著录项

  • 来源
    《Journal of Applied Physics 》 |2022年第10期| 100901-1-100901-14| 共14页
  • 作者

    Kumar Anish; Arnold Walter;

  • 作者单位

    Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, A CI of Homi Bhabha National Institute;

    Department of Material Science and Engineering, Saarland University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类 应用物理学 ;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号