...
首页> 外文期刊>ECS Journal of Solid State Science and Technology >Investigation of Bond Energy Effect on the Electronic Band Structure of Penta-Graphene using Tight-Binding Method
【24h】

Investigation of Bond Energy Effect on the Electronic Band Structure of Penta-Graphene using Tight-Binding Method

机译:Investigation of Bond Energy Effect on the Electronic Band Structure of Penta-Graphene using Tight-Binding Method

获取原文
获取原文并翻译 | 示例

摘要

Graphene is a semiconductor with zero band-gap, meaning that the energy difference between the valence band and conduction band is zero. This characteristic is not a good feature for making electronic devices such as transistors and sensors. Therefore, by changing the structure of graphene, a new sample of graphene as "penta graphene" with a non-zero band-gap can be obtained. Penta graphene as a new and stable carbon allotrope is stronger than graphene. It is a nonconductor material in which the transfer of electrons from the valence band to the conduction band is very low. In this research, an attempt has been made by solving the Schrodinger equation for two bond energies t and tp and finally by equating these two energies in the equation, two bands of valence and conduction in penta graphene meet at two points and there is an overlap in this case. Considering the real part of the roots and regardless of their imaginary part, the diagrams of energy E as a function of wave vector k can be obtained for different amounts of bond energy. The results demonstrate that by increasing the value of t, the band gap decreases and there is an overlap between the conduction and valance bands.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号