首页> 外文期刊>Advanced energy materials >Flame Spray Pyrolysis as a Synthesis Platform to Assess Metal Promotion in In_2O_3-Catalyzed CO_2 Hydrogenation
【24h】

Flame Spray Pyrolysis as a Synthesis Platform to Assess Metal Promotion in In_2O_3-Catalyzed CO_2 Hydrogenation

机译:Flame Spray Pyrolysis as a Synthesis Platform to Assess Metal Promotion in In_2O_3-Catalyzed CO_2 Hydrogenation

获取原文
获取原文并翻译 | 示例
           

摘要

A plethora of metal promoters have been applied to enhance the performance of In2O3 in CO2 hydrogenation to methanol, a prospective energy carrier. However, the lack of systematic catalyst preparation and evaluation precludes a direct comparison of their speciation and promotional effects, and consequently, the design of an optimal system. Herein, flame spray pyrolysis (FSP) is employed as a standardized synthesis method to introduce nine metal promoters (0.5 wt.) into In2O3. Methanol productivity generally increased on M-In2O3 with selectivity following Pd approximate to Pt Rh approximate to Ru approximate to Ir Ni approximate to Co Ag approximate to In2O3 Au. In-depth characterization, kinetic analyses, and theoretical calculations reveal a range of metal-dependent speciation which dictate catalyst architecture and degree of promotion. Atomically-dispersed promoters (Pd, Pt, Rh, Ru, and Ir) grant the highest improvement in performance, particularly Pd and Pt, which markedly promote hydrogen activation while hindering undesired CO formation. In contrast, metals in clustered (Ni and Co) and nanoparticle (Ag and Au) forms display moderate and no promotion, respectively. This study provides an atomic-level understanding of In2O3 promotion based on a unified protocol, and highlights the potential of FSP to engineer complex catalytic systems toward more efficient energy transformations.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号