首页> 外文期刊>American Journal of Pathology: Official Publication of the American Association of Pathologists >Hepatocyte Transplantation Rebalances Cytokines for Hepatic Regeneration in Rats with Ataxia Telangiectasia Mutated Pathway-Related Acute Liver Failure
【24h】

Hepatocyte Transplantation Rebalances Cytokines for Hepatic Regeneration in Rats with Ataxia Telangiectasia Mutated Pathway-Related Acute Liver Failure

机译:Hepatocyte Transplantation Rebalances Cytokines for Hepatic Regeneration in Rats with Ataxia Telangiectasia Mutated Pathway-Related Acute Liver Failure

获取原文
获取原文并翻译 | 示例
       

摘要

? 2023 American Society for Investigative PathologyInadequate DNA damage response related to ataxia telangiectasia mutated gene restricts hepatic regeneration in acute liver failure. Resolving mechanistic gaps in liver damage and repair requires additional animal models that are unconstrained by ultrarapid and unpredictable mortalities or substantial divergences from human pathology. This study used Fischer 344 rats primed with the antitubercular drug, rifampicin, plus phenobarbitone, and monocrotaline, a DNA adduct-forming alkaloid. Rifampicin and monocrotaline can cause liver failure in people. This regimen resulted in hepatic oxidative stress, necrosis, DNA double-strand breaks, liver test abnormalities, altered serum cytokine expression, and mortality. Healthy donor hepatocytes were transplanted ectopically in the peritoneal cavity to study whether they could supply metabolic support and rebalance inflammatory or protective cytokines affecting liver regeneration events. Hepatocyte transplantation increased candidate cytokine levels (granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, interferon-γ, IL-10, and IL-12), leading to Atm, Stat3, and Akt signaling in hepatocytes and nonparenchymal cells, lowering of inflammation, and improvements in intermediary metabolism, DNA repair, and hepatocyte proliferation. Such control of DNA damage and inflammation, along with stimulation of hepatic growth, offers paradigms for cell signaling to restore hepatic homeostasis and regeneration in acute liver failure. Further studies of molecular pathways of high pathobiological impact will advance the knowledge of liver regeneration.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号