首页> 外文期刊>Advanced Optical Materials >Nanoheating and Nanoconduction with Near-Field Plasmonics: Prospects for Harnessing the Moire and Seebeck Effects in Ultrathin Films
【24h】

Nanoheating and Nanoconduction with Near-Field Plasmonics: Prospects for Harnessing the Moire and Seebeck Effects in Ultrathin Films

机译:近场等离子体的纳米加热和纳米传导:利用超薄膜中的莫尔和塞贝克效应的前景

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Near-field plasmonics is a burgeoning field that has unlocked several opportunities related to quantum information processing, single-molecule spectroscopy, and cavity quantum electrodynamics. All of which require the adept control of light, heat, and charges on the nanoscale. In particular, nanoresonators and near-field transducers (NFTs) have the ability to subdiffract light well below the classical diffraction limit by coupling a photon mode to a plasmonic mode. Herein, advantage is taken of a nanoscale plasmonic light source produced by an NFT and the subsequent “hot spot” created by its relatively high intensity. It is theoretically demonstrated how the light, heat, and current produced can be manipulated when incident on layers of black phosphorous (BP), a highly abundant material with electric and thermal conductivity values comparable to graphene. Moiré physics of two films rotated relative to one another, along with the Seebeck effect for which temperature gradients show the possibility to induce electrical voltages (milli-Volts) without a metallic contact, is specifically investigated. It is found that these methods can effectively regulate the temperature distribution and its values by roughly 101–102 K, crucial to the functionality of many nanodevices, and furthermore manipulate the directional flow of current; advantageous for electrical switching and output steering of energy.
机译:近场等离子体学是一个新兴领域,它开启了与量子信息处理、单分子光谱学和腔量子电动力学相关的多个机会。所有这些都需要在纳米尺度上熟练控制光、热和电荷。特别是,纳米谐振器和近场换能器(NFT)能够通过将光子模式耦合到等离子体模式,使光远低于经典衍射极限。本文中,利用了由NFT产生的纳米级等离子体光源以及随后由其相对较高的强度产生的“热点”。从理论上证明了当入射到黑磷 (BP) 层上时如何操纵产生的光、热和电流,黑磷 (BP) 是一种高度丰富的材料,其导电性和导热性值可与石墨烯相媲美。专门研究了两层薄膜相对旋转的莫尔物理特性,以及塞贝克效应,其中温度梯度显示可以在没有金属接触的情况下感应出电压(毫伏)。研究发现,这些方法可以有效地将温度分布及其值调节大约101-102 K,这对许多纳米器件的功能至关重要,并进一步操纵电流的方向流动;有利于电气开关和能量的输出控制。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号