首页> 外文期刊>Angewandte Chemie >A Voltage-Responsive Synthetic Cl--Channel Regulated by pH
【24h】

A Voltage-Responsive Synthetic Cl--Channel Regulated by pH

机译:A Voltage-Responsive Synthetic Cl--Channel Regulated by pH

获取原文
获取原文并翻译 | 示例
       

摘要

Transmembrane protein channels are an important inspiration for the design of artificial ion channels. Their dipolar structure helps overcome the high energy barrier to selectively translocate water and ions sharing one pathway, across the cell membrane. Herein, we report that the amino-imidazole (Imu) amphiphiles self-assemble via multiple H-bonding to form stable artificial Cl--channels within lipid bilayers. The alignment of water/Cl(-)wires influences the conduction of ions, envisioned to diffuse along the hydrophilic pathways; at acidic pH, Cl-/H(+)symport conducts along a partly protonated channel, while at basic pH, higher Cl-/OH(-)antiport translocate through a neutral channel configuration, which can be greatly activated by applying strong electric field. This voltage/pH regulated channel system represents an unexplored alternative for ion-pumping along artificial ion-channels, parallel to that of biology.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号