...
首页> 外文期刊>Applied physics letters >Controlling the creation/annihilation and distribution of magnetic skyrmions by manipulating an externally applied voltage
【24h】

Controlling the creation/annihilation and distribution of magnetic skyrmions by manipulating an externally applied voltage

机译:Controlling the creation/annihilation and distribution of magnetic skyrmions by manipulating an externally applied voltage

获取原文
获取原文并翻译 | 示例
           

摘要

Magnetic skyrmions are currently gaining attention owing to their potential to act as information carriers in spintronic devices. However, conventional techniques which rely on modulating the electric current to write or manipulate information using skyrmions are not energy efficient. Therefore, in this study, a Ta/Co-Fe-B/Ta/MgO junction that hosts a skyrmion was utilized to fabricate a device to investigate the effect of applying a voltage in the direction perpendicular to the film plane. Magneto-optical Kerr effect microscopy was performed in a polar configuration to observe the difference in the perpendicular magnetic anisotropy by observing the behavior of the magnetic domain structure and the skyrmions. Our findings suggest that voltage-induced magnetic domain structure modulation and the creation/annihilation of skyrmions are both possible. Furthermore, manipulation of skyrmions was realized by utilizing repulsive magnetic dipole interaction between the voltage-created skyrmion and skyrmion, exhibiting Brownian motion, outside the top electrode. Thus, our proposed method can enable controlling the creation and annihilation of skyrmions and their positions by manipulating the externally applied voltage. These findings can advance unconventional computing fields, such as stochastic and ultra-low-power computing. (C) 2022 Author(s).All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)license (http://creativecommons.org/licenses/by/4.0/).

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号