首页> 外文期刊>IEEE Transactions on Power Electronics >Harmonic Linearization and Investigation of Three-Phase Parallel-Structured Signal Decomposition Algorithms in Grid-Connected Applications
【24h】

Harmonic Linearization and Investigation of Three-Phase Parallel-Structured Signal Decomposition Algorithms in Grid-Connected Applications

机译:Harmonic Linearization and Investigation of Three-Phase Parallel-Structured Signal Decomposition Algorithms in Grid-Connected Applications

获取原文
获取原文并翻译 | 示例
       

摘要

In practice, because of different factors, the supply voltage (especially in the distribution level) almost always has some degrees of imbalance and harmonic pollution. With increasing the level of these power quality issues in recent years, their monitoring and compensation using custom power devices have received much attention. In addition, modern power converter based renewable energy sources are expected to provide some ancillary services to mitigate these power quality issues. These tasks and requirements often involve using a signal processing tool for the online detection of the fundamental sequence components and harmonics of the voltage and/or current signals. The typical choice for this purpose is the discrete Fourier transform as it offers a fast computational speed. It, however, may not be a very attractive solution for applications where the selective extraction of a few frequency components is required as it demands a high computational effort. In such scenarios, using time-domain signal decomposition algorithms is more desirable. Generally speaking, these algorithms are nonlinear feedback control systems, which include two or more dynamically interactive frequency-adaptive filters tuned to concerned frequency components. The complex structure of these algorithms, however, makes them complicated to analyze, especially for those who are not experienced in this field. This article aims to address this difficulty by developing harmonic models for these algorithms and investigating them. To this end, three case studies are considered. Through a harmonic linearization procedure, developing harmonic models for them is shown. The accuracy of these models is then investigated, and performing the harmonic stability analysis using them is demonstrated.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号