首页> 外文期刊>Advanced functional materials >Backbone Configuration and Electronic Property Tuning of Imide-Functionalized Ladder-Type Heteroarenes-Based Polymer Acceptors for Efficient All-Polymer Solar Cells
【24h】

Backbone Configuration and Electronic Property Tuning of Imide-Functionalized Ladder-Type Heteroarenes-Based Polymer Acceptors for Efficient All-Polymer Solar Cells

机译:用于高效全聚合物太阳能电池的酰亚胺功能化阶梯型杂芳烃基聚合物受体的骨架构型及电子性能调控

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Electron-deficient ladder-type pi-conjugated systems are highly desired for constructing polymer acceptors due to their unique electronic properties. Herein, two series of polymer acceptors PBTIn-(F)T (n = 1-4) based on imide-functionalized ladder-type heteroarenes (BTIn) with tunable conjugation length are synthesized. Effects of their backbone configuration and electronic properties on film morphology and performance of all-polymer solar cells (all-PSCs) are systematically investigated through theoretical computation, Raman spectroscopy, grazing incidence wide-angle X-ray scattering, etc. It is found that the ladder-type heteroarene size extension and polymer backbone fluorination gradually lower the frontier molecular orbital energy levels, leading to progressive bandgap narrowing with more efficient exciton dissociation. Furthermore, the centrosymmetric and axisymmetric characteristics of BTIn result in distinct backbone configuration with varied self-aggregation and crystalline phases, hence determining the blend film morphology. The highest efficiencies in these two series are attained from PBTI3-T and PBTI3-FT with a curved backbone configuration. PBTI4-(F)T with further extended heteroarenes shows linear backbone, negatively affecting film morphology and efficiency. This study provides fundamental material structure-device performance correlations for ladder-type heteroarenes-based polymer acceptors for the first time and demonstrates that more extended ladder-type backbones do not necessarily improve the device performance, offering guidelines for designing polymer acceptors to maximize all-PSC performance.
机译:由于其独特的电子特性,缺电子梯形π共轭系统是构建聚合物受体的理想选择。本文合成了基于酰亚胺官能团化梯型杂芳烃(BTIn)且共轭长度可调的两系列聚合物受体PBTIn-(F)T(n = 1-4)。通过理论计算、拉曼光谱、掠入射广角X射线散射等方法,系统研究了其主链构型和电子特性对全聚合物太阳能电池(all-PSCs)薄膜形貌和性能的影响。研究发现,梯形杂芳烃的尺寸延伸和聚合物主链氟化逐渐降低了前沿分子轨道能级,导致带隙逐渐变窄,激子解离效率更高。此外,BTIn的中心对称和轴对称特性导致了具有不同自聚集和晶相的不同主链构型,从而决定了共混膜的形态。这两个系列中的最高效率来自具有弯曲主干配置的 PBTI3-T 和 PBTI3-FT。PBTI4-(F)T具有进一步延伸的杂芳烃,显示出线性骨架,对薄膜的形貌和效率产生负面影响。本研究首次为梯形杂芳烃基聚合物受体提供了基本的材料结构-器件性能相关性,并证明了更扩展的梯形主链并不一定能提高器件性能,为设计聚合物受体以最大限度地提高全PSC性能提供了指导。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号