首页> 外文期刊>Physical biology >On kinetics and extreme values in systems with random interactions
【24h】

On kinetics and extreme values in systems with random interactions

机译:On kinetics and extreme values in systems with random interactions

获取原文
获取原文并翻译 | 示例
       

摘要

Biological environments such as the cytoplasm are comprised of many different molecules, which makes explicit modeling intractable. In the spirit of Wigner, one may be tempted to assume interactions to derive from a random distribution. Via this approximation, the system can be efficiently treated in the mean-field, and general statements about expected behavior of such systems can be made. Here, I study systems of particles interacting via random potentials, outside of mean-field approximations. These systems exhibit a phase transition temperature, under which part of the components precipitate. The nature of this transition appears to be non-universal, and to depend intimately on the underlying distribution of interactions. Above the phase transition temperature, the system can be efficiently treated using a Bethe approximation, which shows a dependence on extreme value statistics. Relaxation timescales of this system tend to be slow, but can be made arbitrarily fast by increasing the number of neighbors of each particle.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号