首页> 外文期刊>Journal of Materials Research >Operando bulk and interfacial characterization for electrochemical energy storage: Case study employing isothermal microcalorimetry and X-ray absorption spectroscopy
【24h】

Operando bulk and interfacial characterization for electrochemical energy storage: Case study employing isothermal microcalorimetry and X-ray absorption spectroscopy

机译:电化学储能的体表征和界面表征:采用等温微量热法和X射线吸收光谱法的案例研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The global shift to electricity as the main energy carrier will require innovation in electrochemical energy storage (EES). EES systems are the key to the "electron energy economy," minimizing losses and increasing reliability between energy supply and demand. However, steep challenges such as cost, cycle/calendar life, energy density, material availability, and safety limit widespread adoption of batteries for large-scale grid and vehicle applications. Battery innovation that meets today's challenges will require new chemistries, which can originate from understanding charge transport phenomena at multiple time and length scales. The advancement of operando characterization can expedite this progress as changes can be observed during battery function. This article highlights progress in bulk and interfacial operando characterization of batteries. Specifically, a case study involving Fe3O4 is provided demonstrating that combining X-ray absorption spectroscopy and isothermal microcalorimetry can provide real-time characterization of productive faradaic redox processes and parasitic interfacial reactions during (de)lithiation.
机译:全球向电力作为主要能源载体的转变将需要电化学储能(EES)的创新。EES系统是“电子能源经济”的关键,可最大限度地减少损失并提高能源供需之间的可靠性。然而,成本、周期/日历寿命、能量密度、材料可用性和安全性等严峻挑战限制了电池在大规模电网和车辆应用中的广泛采用。应对当今挑战的电池创新将需要新的化学成分,这可能源于对多个时间和长度尺度的电荷传输现象的理解。操作表征的进步可以加快这一进展,因为在电池功能期间可以观察到变化。本文重点介绍了电池体和界面操作表征的进展。具体而言,提供了一个涉及Fe3O4的案例研究,表明将X射线吸收光谱和等温微量热法相结合,可以实时表征(去)锂化过程中的法拉第氧化还原过程和寄生界面反应。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号