首页> 外文期刊>Advanced energy materials >Molten Salts Etching Route Driven Universal Construction of MXene/Transition Metal Sulfides Heterostructures with Interfacial Electronic Coupling for Superior Sodium Storage
【24h】

Molten Salts Etching Route Driven Universal Construction of MXene/Transition Metal Sulfides Heterostructures with Interfacial Electronic Coupling for Superior Sodium Storage

机译:熔盐蚀刻路线驱动MXene/过渡金属硫化物异质结的通用构建,具有界面电子耦合,可实现卓越的钠储存

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The MXene-based heterostructures have recently attracted great interest as anode materials for sodium-ion batteries (SIBs). Nonetheless, the complicated and harsh preparation process impedes their further commercialization. Herein, a novel, safe, low-destructive, and universal strategy for rationally fabricating Ti_3C_2T_x MXene/transition metal sulfides (MS_y) heterostructures is presented via Lewis acidic molten salts etching and subsequent in situ sulfurization treatment. Benefiting from the interfacial electronic coupling between highly conductive Ti_3C_2T_x MXene (T_x = -O and -Cl) and MSy (M = Fe, Co and Ni), the heterostructures possess remarkably improved electronic conductivity, promoted Na+ migration kinetics, and robust architectures. As a proof-of-concept demonstration, the Ti_3C_2T_x/FeS2 heterostructure demonstrates outstanding rate performance (456.6 mAh g~(?1) at 10 A g~(?1)) and long-term cyclic stability (474.9 mAh g~(?1) after 600 cycles at 5 A g~(?1)) when serving as SIB anodes. Impressively, a sodium-ion full battery with Ti_3C_2T_x/FeS_2 anode delivers an excellent reversible capacity of 431.6 mAh g~(?1) after 1000 cycles at 3 A g~(?1). Moreover, the dual sodium storage behavior of Ti_3C_2T_x/FeS_2 heterostructure and underlying mechanism toward exceptional electrochemical performance are revealed by comprehensive characterizations and theoretical calculations. Based on the full utilization of molten salt etching products, the present work offers new insight into the fabrication of MXene-based heterostructures.
机译:MXene基异质结构作为钠离子电池(SIBs)的负极材料近年来引起了人们的极大兴趣。然而,复杂而苛刻的制备过程阻碍了它们的进一步商业化。本文提出了一种新颖、安全、低破坏性、通用Ti_3C_2T_x通过路易斯酸性熔盐刻蚀和随后的原位硫化处理来合理制备MXene/过渡金属硫化物(MS_y)异质结的策略。得益于高导电Ti_3C_2T_x MXene(T_x = -O和-Cl)和MSy(M = Fe、Co和Ni)之间的界面电子耦合,异质结具有显著提高的电子导电性、促进的Na+迁移动力学和稳健的结构。作为概念验证演示,Ti_3C_2T_x/FeS2异质结在作为SIB阳极时表现出优异的倍率性能(在10 A g~(?1)下为456.6 mAh g~(?1))和长期循环稳定性(在5 A g~(?1)下循环600次后为474.9 mAh g~(?1))。令人印象深刻的是,具有Ti_3C_2T_x/FeS_2阳极的钠离子全电池在3 A g~(?1)下循环1000次后,可提供431.6 mAh g~(?1)的出色可逆容量。此外,通过全面的表征和理论计算,揭示了Ti_3C_2T_x/FeS_2异质结的双重钠储存行为及其实现卓越电化学性能的潜在机制。在充分利用熔盐刻蚀产品的基础上,本工作为MXene基异质结构的制备提供了新的思路。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号