...
首页> 外文期刊>Global change biology >Soil organic matter molecular composition with long‐term detrital alterations is controlled by site‐specific forest properties
【24h】

Soil organic matter molecular composition with long‐term detrital alterations is controlled by site‐specific forest properties

机译:具有长期碎屑变化的土壤有机质分子组成受特定地点森林特性的控制

获取原文
获取原文并翻译 | 示例

摘要

Abstract Forest ecosystems are important global soil carbon (C) reservoirs, but their capacity to sequester C is susceptible to climate change factors that alter the quantity and quality of C inputs. To better understand forest soil C responses to altered C inputs, we integrated three molecular composition published data sets of soil organic matter (SOM) and soil microbial communities for mineral soils after 20 years of detrital input and removal treatments in two deciduous forests: Bousson Forest (BF), Harvard Forest (HF), and a coniferous forest: H.J. Andrews Forest (HJA). Soil C turnover times were estimated from radiocarbon measurements and compared with the molecular‐level data (based on nuclear magnetic resonance and specific analysis of plant‐ and microbial‐derived compounds) to better understand how ecosystem properties control soil C biogeochemistry and dynamics. Doubled aboveground litter additions did not increase soil C for any of the forests studied likely due to long‐term soil priming. The degree of SOM decomposition was higher for bacteria‐dominated sites with higher nitrogen (N) availability while lower for the N‐poor coniferous forest. Litter exclusions significantly decreased soil C, increased SOM decomposition state, and led to the adaptation of the microbial communities to changes in available substrates. Finally, although aboveground litter determined soil C dynamics and its molecular composition in the coniferous forest (HJA), belowground litter appeared to be more influential in broadleaf deciduous forests (BH and HF). This synthesis demonstrates that inherent ecosystem properties regulate how soil C dynamics change with litter manipulations at the molecular‐level. Across the forests studied, 20 years of litter additions did not enhance soil C content, whereas litter reductions negatively impacted soil C concentrations. These results indicate that soil C biogeochemistry at these temperate forests is highly sensitive to changes in litter deposition, which are a product of environmental change drivers.
机译:摘要 森林生态系统是全球重要的土壤碳库,但其固碳能力易受气候变化因素影响,影响碳投入的数量和质量。为了更好地了解森林土壤碳对碳输入改变的响应,我们整合了三个分子组成已发表的土壤有机质 (SOM) 和土壤微生物群落数据集,这些数据集在两个落叶林中经过 20 年的碎屑输入和去除处理:Bousson 森林 (BF)、哈佛森林 (HF) 和针叶林:HJ 安德鲁斯森林 (HJA)。通过放射性碳测量估计土壤碳周转时间,并与分子水平数据(基于核磁共振和植物和微生物衍生化合物的特定分析)进行比较,以更好地了解生态系统特性如何控制土壤碳生物地球化学和动力学。地上凋落物增加一倍并没有增加所研究任何森林的土壤碳,这可能是由于长期的土壤启动。氮有效性较高的细菌占多数的地点的SOM分解程度较高,而贫氮针叶林的SOM分解程度较低。凋落物排除显著降低了土壤C,增加了SOM分解状态,并导致微生物群落适应可用基质的变化。最后,虽然地上凋落物决定了针叶林(HJA)土壤碳的动态及其分子组成,但地下凋落物在阔叶落叶林(BH和HF)中的影响更大。该综合结果表明,固有的生态系统特性在分子水平上调节土壤碳动态如何随着凋落物的操纵而变化。在所研究的森林中,20年的凋落物增加并没有增加土壤的碳含量,而凋落物的减少对土壤碳浓度产生了负面影响。这些结果表明,这些温带森林的土壤C生物地球化学对凋落物沉积的变化高度敏感,而凋落物沉降是环境变化驱动因素的产物。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号