...
首页> 外文期刊>Progress in photovoltaics >Thermally stable poly‐Si tunnel junctions enabling next‐generation high‐efficiency Si solar cells
【24h】

Thermally stable poly‐Si tunnel junctions enabling next‐generation high‐efficiency Si solar cells

机译:热稳定的多晶硅隧道结,实现下一代高效硅太阳能电池

获取原文
获取原文并翻译 | 示例

摘要

Abstract We demonstrate thermally stable polysilicon (poly‐Si)‐based tunnel junctions (TJs), that is, n+‐poly‐Si/p+‐poly‐Si/SiOx and n+‐poly‐Si/SiOx/p+‐poly‐Si/SiOx, for passivating a silicon wafer, selectively extracting holes, and being compatible with the high‐temperature firing process of screen‐printed metal contacts. An additional interfacial oxide between the n+‐poly‐Si and p+‐poly‐Si layers enhances thermal stability and acts as a barrier layer to mitigate dopant interdiffusion between the adjacent poly‐Si layers, without significantly increasing the contact resistance. The TJ's thermal stability is investigated by analysing the TJ recombination current density J0 and effective contact resistance ρc after high‐temperature firing (740°C to 840°C) of nonmetallised samples. We evaluate two different TJ applications via efficiency potential calculations: (1) When the TJ is applied on the front side of a passivated‐contact Si bottom cell for 2‐terminal tandem cells, a calculated add‐on efficiency of 9.9 for the Si bottom‐cell can be achieved with the inclusion of the interfacial oxide; (2) to enable conventional metal screen‐printing on a p+‐poly‐Si layer, the TJ is applied on the rear side of a single‐junction Si solar cell, giving a calculated cell efficiency potential of 23.6 at 1‐Sun condition. For such a configuration, in the absence of an interfacial oxide between the adjacent poly‐Si layers, the cell efficiency potential improves with peak firing temperature. In summary, we successfully develop thermally stable hole‐extracting TJs for the two aforementioned applications that are fully compatible with existing industrial silicon solar cell fabrication processes.
机译:摘要 我们展示了热稳定多晶硅(TJs)基,即n+聚Si/p+聚Si/SiOx和n+聚Si/SiOx/p+聚Si/SiOx,用于硅片钝化,选择性拔出空穴,并兼容丝网印刷金属触点的高温烧制工艺。n+-poly-Si 和 p+-poly-Si 层之间的额外界面氧化物增强了热稳定性,并作为阻挡层,以减轻相邻多晶硅层之间的掺杂剂相互扩散,而不会显着增加接触电阻。通过分析非金属化样品高温烧制(740°C至840°C)后的TJ复合电流密度J0和有效接触电阻ρc,研究了TJ的热稳定性。我们通过效率电位计算评估了两种不同的 TJ 应用:(1) 当 TJ 施加在 2 端串联电池的钝化接触硅底电池的正面时,硅底电池的附加效率计算为 9.9% 通过加入界面氧化物可以实现;(2)为了在p+-poly-Si层上实现传统的金属丝网印刷,将TJ施加在单结Si太阳能电池的背面,在1-Sun条件下计算出的电池效率潜力为23.6%。对于这种配置,在相邻多晶硅层之间没有界面氧化物的情况下,电池效率潜力随着峰值烧成温度的提高而提高。总之,我们成功地为上述两种应用开发了热稳定的空穴提取TJ,这些应用与现有的工业硅太阳能电池制造工艺完全兼容。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号