首页> 外文期刊>The Journal of Chemical Physics >Systematic bottom-up molecular coarse-graining via force and torque matching using anisotropic particles
【24h】

Systematic bottom-up molecular coarse-graining via force and torque matching using anisotropic particles

机译:Systematic bottom-up molecular coarse-graining via force and torque matching using anisotropic particles

获取原文
获取原文并翻译 | 示例
           

摘要

We derive a systematic and general method for parameterizing coarse-grained molecular models consisting of anisotropic particles from fine-grained (e.g., all-atom) models for condensed-phase molecular dynamics simulations. The method, which we call anisotropic force-matching coarse-graining (AFM-CG), is based on rigorous statistical mechanical principles, enforcing consistency between the coarse-grained and fine-grained phase-space distributions to derive equations for the coarse-grained forces, torques, masses, and moments of inertia in terms of properties of a condensed-phase fine-grained system. We verify the accuracy and efficiency of the method by coarse-graining liquid-state systems of two different anisotropic organic molecules, benzene and perylene, and show that the parameterized coarse-grained models more accurately describe properties of these systems than previous anisotropic coarse-grained models parameterized using other methods that do not account for finite-temperature and many-body effects on the condensed-phase coarse-grained interactions. The AFM-CG method will be useful for developing accurate and efficient dynamical simulation models of condensed-phase systems of molecules consisting of large, rigid, anisotropic fragments, such as liquid crystals, organic semiconductors, and nucleic acids. Published under an exclusive license by AIP Publishing.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号