首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Triazines and related products. Part 18. Decomposition of 1,2,3-benzotriazines and related triazenes with sodium azide in acetic acid: a convenient route to azidoarenes
【24h】

Triazines and related products. Part 18. Decomposition of 1,2,3-benzotriazines and related triazenes with sodium azide in acetic acid: a convenient route to azidoarenes

机译:三嗪类及相关产品。第 18 部分。1,2,3-苯并三嗪类及相关三氮烯与叠氮化钠在乙酸中的分解:叠氮基芳烃的便捷途径

获取原文
获取外文期刊封面目录资料

摘要

1977 103Triazines and Related Products. Part 182 Decomposition of 1,2,3-Benzotriazines and Related Triazenes with Sodium Azide in Acetic Acid :a Convenient Route to AzidoarenesBy Andreas Gescher, Malcolm F. G. Stevens," and Colin P. Turnbull, Department of Pharmacy, Universityof Aston in Birmingham, Birmingham B4 7ET1.2,3-Benzotriazin-4(3H) -one and its 3-aryl derivatives decompose in boiling acetic acid containing sodium azideor sodium iodide to afford 2-azido- and 2-iodo-benzamides, respectively, in high yields. Certain azidoarenes withnucleophilic orrho-substituents, formed from the decomposition of 1,2,3- benzotriazines and related aryltriazenes,cyclise with elimination of nitrogen under the reaction conditions. 1.2-Bis-o-nitrophenyltriazene in acetic acidcontaining sodium azide yields benzofurazan N-oxide and 2-nitroaniline.WE have previously described the degradation of 1,2,3-benzotriazin4(3H)-ones (1) in the presence of secondaryamines and reactive methylene systems.3 3-Alkyl-,3-aryl-, and 3-aralkyl-l,2,3-benzotriazin-4(3H)-ones are,in general, unreactive towards amine nucleophiles,whereas the parent triazinone (la) undergoes nucleo-philic attack at C-4 with subsequent ring opening andloss of nitrogen to afford anthranilamide derivative^.^^^We anticipated that a similar nucleophilic attack byazide ion could lead to the triazenobenzoyl azide (2),which should undergo successive losses of nitrogen first togive anthraniloyl azide (3) and thence, via a Curtiusrearrangement ,5 benzimidazolone (4) (Scheme).The triazinone (la) however was recovered unchangedfrom boiling aqueous ethanol, dimethylformamide, ordimethyl sulphoxide containing an excess of sodium1 Part 17, E.J. Gray, M. F. G. Stevens, G. Tennant, andR. J . S. Vevers, J.C.S. Perkin I , 1976, 1496.2 M. S. S. Siddiqui and M. F. G. Stevens, J.C.S. Perkin I , 1974,611.3 M. S. S. Siddiqui and M. F. G. Stevens, J.C.S. Perkin I , 1974,2482.A. W. Murray and K. Vaughan, J . Chem. SOG. ( C ) , 1970,2070.azide. Boiling acetic acid, which is known to be an idealsolvent to promote reversible ring-opening of 1,2,3-benzo-triazin-4(3H)-ones (1) to -the diazonium species (5),s-*proved an admirable medium for azide-promoted decom-position, and the unsubstituted triazinone (la) wassmoothly converted in near quantitative yield into 2-azidobenzamide (6a) and not the predicted product.Al-though 3-alkyl- and S-aralkyl-l,2,3-benzotriazin-4(3H)-ones (1 b-h) were unchanged under the same conditions,high yields of N-aryl-2-azidobenzamides (6i-1) wereobtained from the corresponding 3-aryltriazinones (li-1) :the difference in reactivity may be attributed to theelectronic influence of the aryl substituents which inthese cases encourage initial heterolysis of the triazinoneN(2)-N(3) bond.3 Similar features explain the successfulconversion of the 3-pyrimidinyltriazinone (lm) into theappropriate azide (6m). This procedure represents aM. S. Gibson and M. Green, Tetrahedron, 1966, 21, 2191.J. G. Erickson, ' The Chemistry of Heterocyclic Compounds,'ed.A. Weissberger, Interscience, New York, vy1. 10, p. 1.J. P. Horwitz, ' Heterocyclic Compounds, ed. R. C. Elder-field, Wiley, New York, 1961, vol. 7, p. 778. * A. C. Mair and M. F. G. Stevens, J . Chem. SOG. (C), 1971,2317104 J.C.S. Perkin Iuseful new synthesis of N-aryl-2-azidobenzamides, which,unlike the N-alkyl and N-aralkyl analogues, cannot beprepared from appropriately substituted anthranil-amides by the usual diazotisation-azidation route becauseof the dominating competitive intramolecular cyclis-at ion to 3-aryl- 1,2,3- benzo t riazin-4 (3H) -ones .8$The unsubstituted triazinone (la) and its N-aryl deriv-atives (li and 1) also decomposed in acetic acid containingHf i c o . N H R( 7 )a ; R = Hb ; R = M eC ; R = E td ; R = Prne ; R = P r 'f ; R = CCH23,.OHg ; R = PhCH2h i R = PhCCH272i ; R = P hj ; R = o - M e C amp; t ~k ; R =o-NOz'CgHLI ; R=p-NO*.CbH'SCHEME Reagents : i, AcOH; ii, NaN,-AcOH ; iii, NaI-AcOHsodium iodide to afford high yields of the corresponding2-iodobenzamides (7a, i, and 1) respectively, but all theN-alkyltriazinones (lb-h) failed to react under thesame conditions.The nucleophilicity of the partici-pating anion also limits the synthetic scope of the de-T. B. Brown and M. F. G. Stevens, J . C . S . Perkin I, 1976,1023.lo H. N. E. Stevens and M. F. G. Stevens, J. Chem. SOC. ( C ) ,1970, 2308.composition: no 2-substituted benzamides were isolatedwhen the triazinone (la) was boiled in acetic acid(10)containing sodium bromide, chloride, cyanide, acetate,or sulphite.Conceivably more strongly nucleophilicanions would be as effective as azide and iodide ions.Decomposition of benzimidazol,2-c 1,2,3benzo-triazine (8) in acetic acid-sodium azide yielded the known2-o-azidophenylbenzimidazole (9), which was furthercharacterised by thennolytic cyclisation at 200 "C to theindazolo2,3-a benzimidazole (10) .lo In contrast , thes-triazinol,2-c 1,2,3benzotriazines (1 la-c) were trans-formed into the corresponding diamino-s-triazinol,2-b-indazoles (13a-c) in acetic acid-sodium azide. Theintermediates in these reactions the o-azidophenyl-s-triazines (12a-c) were shown independently to cyclisein boiling acetic acid, probably by a facilitated neigh-bouring-group elimination of nitrogen.llNH(11) (121(13)a ; R = Hb ; R = M ec ; R = B rThe acyclic NNN-systems (triazenes) also decomposedsmoothly under the influence of azide ion, particularlywith those substrates bearing an ortko-substituent suit-l1 s.M. Mackenzie and M. F. G. Stevens, J. Chem. SOC. ( C ) ,1970, 22981977 105able to interact with the azide group. For example,4-amino-2-2- (piperidin-1-ylazo) phenyllquinazoline (14)yielded the corresponding azide (15) after a short time inboiling acetic acid; prolonged reaction led to the form-ation of a mixture of the isomeric aminoindazoloquin-azolines (16) and (17). The azide (19) formed from thecorresponding quinazolone (18) showed no tendency tonitrophenyl azide in boiling acetic acid.On the otherhand, decomposition of the isomeric 1,3-bis-o-nitrophenyl-triazene (20) on a preparative scale gave only benzo-furazan N-oxide (22) and 2-nitroaniline. The benzo-furazan arises from the intermediate 2-nitrophenyl azide(21), which cyclises with nitrogen loss under the reactionconditions.12cyclise, presumably because the more weakly nucleo-philic N-atoms of the quinazolone ring cannot initiate0 0(18) (19)nitrogen loss. Decomposition of the triazene (14) in thepresence of acetic acid-sodium iodide afforded a highyield of the hydroiodide salt of Pamino-2-o-iodophenyl-quinazoline.0-+/(28) +'0-111N(22)Decomposition of 1,3-diaryltriazenes in acetic acid-sodium azide was followed by t.1.c.and in all casesexamined the main products of the reactions were theexpected azido- and amino-arenes. 1 ,S-Bis-fi-chloro-phenyltriazene decomposed smoothly at room temper-ature to afford 4-chlorophenyl azide and 4-chloroaniline.More forcing (boiling) conditions were required with1,3-bis-o-cyanophenyl-l-methyltriazene , which yieldedthe expected 2-azidobenzonitrile and N-methylanthranil-onitrile. Less satisfactory was the degradation of 1,3-bis-P-nitrophenyltriazene, which gave 4-nitrophenyl azideand 4-nitroaniline and at least five other compounds,presumably formed by secondary decomposition of theEXPERIMENTALLight petroleum refers t o the fraction of b.p. 60-80".1.r. spectra were recorded with a Perkin-Elmer 257 spectro-meter for KBr discs.2-Azidobenzumide (6a) .--I ,2,3-Benzotriazin-4( 3H)-one(0.6 g) and sodium azide (4 mol.equiv.) were boiled in aceticacid (5 ml) for 1 h and the mixture was diluted with water.A chloroform extract of the mixture furnished a gum whenconcentrated. Trituration with benzene yielded 2-azido-benzamide (95), which crystallised from benzene as whiteneedles, m.p. 135-136" (lit.,* 135-136") ; vmax. 3 378 and3 170 (NH), 2 140 and 2 110 (NJ, and 1653 cm-l (CO).There was no reaction when the triazinone was boiledwith an excess of sodium azide (4 mol. equiv.) in 75aqueous ethanol, 70 aqueous dimethylformamide, ordimethyl sulphoxide for 3 h.Similarly prepared from the appropriate 3-substituted1,2,3-benzotriazin-4(3H)-ones and sodium azide in boilingacetic acid were the following N-substituted 2-azidobenz-amides; N-phenyl- (64 (95y0), m.p.129-130" (efferv.) asbuff flakes (from aqueous ethanol) (Found: C, 65.6; H,4.0; N, 25.4. C13H1,N40 requires C, 65.5; H, 4.2; N,25;.3), v,, 3 290 (NH), 2 135 and 2 100 (NJ, and 1650cm-1 (CO); N-o-tolyl- (6j) (88), m.p. 100-101", as greyneedles (from ethanol) (Found: C, 66.9; H, 4.6; N, 22.0.C14H,,N,0 requires C, 66.7; H, 4.8; N, 22.2); vmx.3 350 (NH), 2 130 and 2 100 (N3), and 1668 cm-l (CO);N-o-nitrophenyl- (6k) (95), m.p. 150-152" (efferv.) asbronze needles (from ethanol) (Found: C, 54.9; H, 3.0;N, 24.9. C,,H,N,O, requires C, 55.1; H, 3.2; N, 24.7),vmx 3 290 (NH), 2 138 (NJ, and 1 670 cm-l (CO); N-p-nitrophenyl- (61) (93), m.p.162-164" (efferv.) as bronzeneedles (from ethanol) (Found: C, 55.3; H, 3.5; N, 24.7),v, 3 310 (NH), 2 135 (N3), and 1 665 cm-l (CO): N-2-amino-3,4-dilzydro-4-oxo-6-methyl~yrimidi~-5-yl- (6m) (65)m.p. 188-190" (efferv. and .resolid.) as buff micro-rosettes(from ethanol) (Found: C, 50.7; H, 3.6; N, 34.2. C,,H,,-N,O, requires C, 50.5; H, 3.9; N, 34.4), vmx 3 500-2 700 (bonded NH, OH), 2 130 (NJ, and 1 650 cm-l (CO).The 3-alkyltriazinones ( 1 b-f) and 3-aralkyltnazinones(lg and 11) were unchanged by boiling acetic acid containing4 mol. equiv. of sodium azide.l2 P. A. S. Smith and J. H. Boyer, Org. Synth., 1951, 31, 14106 J.C.S. Perkin I2-Iodobenzamide (7a) .-A solution of 1,2,3-benzotriazin-4(3H)-one (1.0 g) in acetic acid (10 ml) containing sodiumiodide (2 mol.equiv.) was boiled (1 h) and diluted with water(20. ml). The precipitated iodobenzamide (85) gavewhte crystals (from aqueous ethanol), m.p. 182-184'(lit.,13 183"), vmx. 3 350 and 3 190 (NH), and 1 640 cm-l (CO).Similarly prepared from the appropriate 3-substituted1,2,3-benzotriazin-4(3H)-ones were the following N-sub-stituted 2-iodobenzamides; N-phenyl- (79 (85), m.p.141-142" (lit.,14 m.p. l42'), v,, 3 230 (NH) and 1 646 cm-1(CO); N-p-nitrophenyl- (71) (goyo), m.p. 213-215O, as paleyellow prisms (from ethanol) (Found: C, 42.6; H, 2.7; N,7.4. C,,H,IN,O, requires C, 42.4; H, 2.5; N, 7.6).2-o-A zidophenylbenzimidazole (9) .-A solution of benz-imidazo1,2-c1,2,3benzotriazine l5 (1.0 g) in acetic acid(10 ml) containing sodium azide (4 mol.equiv.) was boiled(1 h), cooled, and diluted with water (10 ml). The productwas extracted into chloroform, and the extract evaporated.The solid residue, crystallised from light petroleum, yieldedthe azide (85) as brown prisms, m.p. 165-170" (decrep.),identical (i.r. data and thermal behaviour) with an authenticsample.102,4-Diamino-s-triazino lf2-bindazoZe ( 13a) .-(i) kAmino-2-imino-2H-s-triazino 1,2-c 1,2,3benzotriazine l1 ( 1 .O g) ,-acetic acid (10 ml), and sodium azide (4 mol. equiv.) wereboiled (1 h) and the mixture was diluted with water (10 ml).The precipitated triazinoindazole (70) was identical (i.r.and m.p.) with an authentic sample.11(ii) A solution of 2,4-diamino-6-( 2-azidophenyl)-s-triazine11(1.0 g) in acetic acid (10 ml) was boiled (1 h) and dilutedwith water to yield the same triazinoindazole (85).2,4-Diamino-9-methyZ-s-triazino 1,2-bindazoZe ( 13b) .-This triazinoindazole was prepared as above from either4-amino-2-imino- lO-methyl-2H-s-triazino 1,2-c 1,2,3benzo-triazine 11 or 2,4-diamino-6-( 2-azido-5-methylphenyl)-s-tri-azine,ll in 70 or 80 yield, respectively.2,4-Diamino-9-bromo-s-triazino 1,2-bindazole ( 13c) .-Thebromotriazinoindazole was prepared either from 4-amino-1O-bromo-2-imino-2H-s-triazino 1,2-c 1,2,3benzotriazine l1in acetic acid containing sodium azide (78), or from 2,4-diamino-6-( 2-azido-5-bromopheny1)-s-triazine11 (90) inacetic acid alone, and was identical (ix.) with authenticmaterial.11( 15) .-4-Amino-2-2-(piperidin-l-ylazo)phenylquinazoline 16 (1.0 g) was boiledin acetic acid (10 ml) with sodium azide (4 mol.equiv.) for15 min. The mixture was diluted with water and extractedwith chloroform, and the chloroform layer evaporated. Theoily residue was dissolved in benzene and fractionated onan alumina column. The first yellow band, eluted withbenzene, afforded the azidophenyZquinazoZine (27y0), m.p.143-145' (resolid.) (from ethanol) (Found: C, 64.4; H,P A mino-2- (2-azidophenyZ)quinazolinelS W. Wachter, Ber., 1893, 26, 1774.l4 W. Wachter, Ber., 1893, 26, 1744.15 L. L. Zaika and M. M. JouillC, J. Heterocyclic Chem., 1966, 3,444.3.9; N,32.2. C14Hl,N,requiresC, 64.1; H, 3.8; N, 32.1y0),vmx.3 340 and 3 180 (NH), and 2 130 and 2 090 cm-l (NJ.Cyclisation of the azidophenylquinazoline in boiling aceticacid was complete in 1 h. The products, identified as theisomeric indazoloquinazolines ( 16) and (1 7), were recognisedas intensely fluorescent spots on t.1.c. on alumina (0.25 mm)with benzene as developing solvent, with R p identical withthose of authentic samples.l?2-(2-AzidophenyZ)quinazolin-4(3H)-one (19) .-A mixtureof 2-2-(piperidin- l-ylazo)phenylquinazolin-4( 3H)-one 2(1.0 g) and sodium azide (4 mol. equiv.) was boiled in aceticacid (10 ml) for 1 h and diluted with water (10 ml). Theprecipitated quinazolinone (0.5 g) had m.p. 300" (frommethanol) (Found: C, 64.1; H, 3.5; N, 26.3. C14H,N,0requires C, 63.9; H, 3.4; N, 26.6y0), vmX.3 200-2 750(bonded NH, OH), 2 140 and 2 100 (N3), and 1680 cm-l4-Amino-2-( 2-iodophenyl)quinazoline.- 4-Amino-2-2-(piperidin- l-ylazo)phenylquinazoline ( 1.0 g) , sodium iodide(2 mol. equiv.), and acetic acid (10 ml) were boiled (2 h), andthe mixture was diluted with water. The quinazolinecrystallised from ethanol as a hydroiodide salt, m.p. 230"(decomp.) (Found: C, 35.5; H, 2.3; N, 8.7. C14H1,1N3,HIrequires C, 35.4; H, 2.3, N, 8.4). The free base, m.p.191-193" (from ethanol) was formed by basifying thehydroiodide with aqueous ammonia (Found: C, 48.8; H,3.05; I, 36.45; N, 12.4. C14Hl,IN3 requires C, 48.4; H,2.9; I, 36.6; N, 12.1).Decomposition of 1,3-Bis-o-nitro~henyltriazene.-The tri-azene (1.44 g) and sodium azide (1.3 g, 4 mol. equiv.) wereboiled in acetic acid (15 ml) for 1 h after the initial vigorouseffervescence had subsided. Solvent was removed and theresidue triturated with benzene (20 ml) . Sodium acetate(1.7 g) was filtered off and the filtrate fractionated on analumina column (benzene as eluant). The rapidly movingpale yellow band afforded benzofurazan N-oxide (0.55 g)(Slyo), identical (i.r.) with an authentic specimen.12 Thedeep yellow band similarly yielded 2-nitroaniline (0.5 g ,The following 1,3-diaryltriazenes were similarly decom-posed in acetic acid containing sodium azide (4 mol. equiv.).Products (in parentheses) were identified by comparisonwith authentic materials on t.1.c. plates silica gel (0.25 mm) ;benzene-acetone (7 : 3) illuminated at 254 or 366 nm : 1,3-bis-p-chlorophenyltriazene (4-chlorophenyl azide and 4-chloro-aniline) ; 1,3-bis-o-cyanophenyl- 1 -methyltriazene (Z-azido-benzonitrile and N-methylanthranilonitrile) ; 1,3-bis-p-nitrophenyltriazene (4-azidoaniline, 4-nitroaniline, and fiveunidentified products).A. G.) and the S.R.C. for a studentship (to C. P. T.).(CO)83).We thank the Cancer Research Campaign for support (to6/870 Received, 6th May, 1976116 M. F. G. Stevens, J.C.S. Perkin I, 1974, 615.l7 M. F. G. Stevens, J. Chem. SOC. (C), 1967, 1096
机译:1977 103三嗪类及相关产品。第 182 部分 1,2,3-苯并三嗪和相关三氮嗪与醋酸中叠氮化钠的分解:通往叠氮芳烃的便捷路线作者:Andreas Gescher、Malcolm FG Stevens“和 Colin P. Turnbull,伯明翰阿斯顿大学药学系,伯明翰 B4 7ET1.2,3-苯并三嗪-4(3H)-酮及其 3-芳基衍生物在含有叠氮化钠或碘化钠的沸腾乙酸中分解,得到 2-叠氮基苯甲酰胺和 2-碘苯甲酰胺, 分别在高产量中。由1,2,3-苯并三嗪类和相关芳基三氮分解形成的某些具有亲核orrho取代基的叠氮芳烃,在反应条件下与氮消除环化。1.2-双-邻硝基苯基三嗪在含醋酸的叠氮化钠中生成苯并呋喃 N-氧化物和 2-硝基苯胺。我们之前已经描述了 1,2,3-苯并三嗪4(3H)-酮 (1) 在仲芳胺和反应性亚甲基体系存在下降解.3 3-烷基-,3-芳基-和 3-芳烷基-l,2,3-苯并三嗪-4(3H)-酮通常对胺亲核试剂不反应,而母体三嗪酮 (la) 在 C-4 处经历亲核攻击,随后开环并失去氮以获得邻氨基苯甲酰胺衍生物^.^^^我们预计类似的亲核攻击叠氮化物离子可能导致三氮杂苯甲酰叠氮化物 (2),它应该首先经历氮的连续损失,以产生蒽酰叠氮化物 (3),然后通过 Curtiusre排列,5 苯并咪唑酮 (4) (Scheme)。然而,三嗪酮 (la) 从沸腾的乙醇水溶液、二甲基甲酰胺、含有过量钠的二甲基亚砜中回收1 Part 17, E.J. Gray, M. F. G. Stevens, G. Tennant, andR.J .S. Vevers, J.C.S. Perkin I , 1976, 1496.2 M. S. S. Siddiqui 和 M. F. G. Stevens, J.C.S. Perkin I , 1974,611.3 M. S. S. S. Siddiqui 和 M. F. G. Stevens, J.C.S. Perkin I , 1974,2482.A. W. Murray and K. Vaughan, J .化学SOG.( C ) , 1970,2070.azide.沸腾的乙酸,已知是促进1,2,3-苯并三嗪-4(3H)-酮(1)向重氮物种(5)的可逆开环的理想溶剂,s-*被证明是叠氮化物促进分解位置的令人钦佩的培养基,未取代的三嗪酮(La)在接近定量的产率下顺利转化为2-叠氮基苯甲酰胺(6a),而不是预测的产物。尽管3-烷基-和S-芳烷基-l,2,3-苯并三嗪-4(3H)-酮(1 b-h)在相同条件下没有变化,但从相应的3-芳基三嗪酮(Li-1)中获得了N-芳基-2-叠氮基苯甲酰胺(6i-1)的高产率:反应性的差异可能归因于芳基取代基的电子影响,在这些情况下,这些取代基促进了三嗪酮N(2)-N(3)键的初始异质解.3相似的特征解释了3-嘧啶基三嗪酮(lm)成功转化为适当的叠氮化物(6m)。此过程表示 aM。S. Gibson 和 M. Green, Tetrahedron, 1966, 21, 2191.J. G. Erickson, ' The Chemistry of Heterocyclic Compounds,'ed.A. Weissberger, Interscience, New York, vy1.10, p. 1.J. P. Horwitz, ' Heterocyclic Compounds, ed. R. C. Elder-field, Wiley, New York, 1961, vol. 7, p. 778.* A. C. Mair 和 M. F. G. Stevens, J .化学SOG.(C), 1971,2317104 J.C.S. Perkin I有用的N-芳基-2-叠氮基苯甲酰胺的新合成,与N-烷基和N-芳烷基类似物不同,它不能通过通常的重氮化-叠氮化途径从适当取代的邻氨基苯甲酰胺中制备,因为对3-芳基-1,2,3-苯并-t二氮嗪-4(3H)-酮的竞争性分子内环离子占主导地位.8$未取代的三嗪酮(la)及其N-芳基衍生物(li和1)也在含有Hf i c o的乙酸中分解。N H R( 7 )a ;R = 血红蛋白 ;R = M eC ;R = E td ;R = Prne ;R = P r 'f ;R = CCH23,.噢 ;R = PhCH2h i R = PhCCH272i ;R = P hj ;R = o - M e C & t ~k ;R =o-NOz'CgHLI ;R=p-否*。CbH'SCHEME 试剂 : i, AcOH;ii: NaN,-AcOH ;iii,NaI-AcOH碘化钠分别提供了相应的2-碘苯甲酰胺(7a、i和1)的高产率,但所有N-烷基三嗪酮(lb-h)在相同条件下均未发生反应。参与阴离子的亲核性也限制了de-T的合成范围。B. Brown 和 M. F. G. Stevens, J .C .S .Perkin I, 1976,1023.lo H. N. E. Stevens and M. F. G. Stevens, J. Chem. SOC. ( C ) ,1970, 2308.组成: 当三嗪酮 (la) 在含有溴化钠、氯化物、氰化物、乙酸盐或亚硫酸盐的乙酸 (10) 中煮沸时,未分离出 2-取代的苯甲酰胺.可以想象,更强的亲核胶将与叠氮化物和碘化物离子一样有效。苯并咪唑[l,2-c][1,2,3]苯并三嗪(8)在乙酸-叠氮化钠中的分解产生已知的2-o-叠氮基苯并咪唑(9),其特征进一步表征于200“C的乙烯硝基环化为吲唑并[2,3-a]苯并咪唑(10)。这些反应中的中间体[邻叠氮基苯基-S-三嗪(12a-c)]被证明独立地使环化素沸腾乙酸,可能是通过促进氮的邻里消除。llNH(11) (121(13)一 ;R = 血红蛋白 ;R = M ec ;R = B r无环NNN体系(三氮杂环)在叠氮离子的影响下也顺利分解,特别是那些带有ortko取代基-suit-l1 s.M.的底物。Mackenzie 和 M. F. G. Stevens, J. Chem. SOC. ( C ) ,1970, 22981977 105能够与叠氮化物基团相互作用。例如,4-氨基-2-[2-(哌啶-1-基偶氮)苯基喹唑啉(14)在短时间沸腾乙酸后产生相应的叠氮化物(15);长时间的反应导致形成异构氨基吲唑喹-偶氮啉(16)和(17)的混合物。由相应的喹唑啉酮(18)形成的叠氮化物(19)在沸腾的乙酸中没有硝基苯基叠氮化物的倾向。另一方面,在制备规模上分解异构体 1,3-双-o-硝基苯基三嗪 (20) 仅得到苯并呋喃氮 N-氧化物 (22) 和 2-硝基苯胺。苯并呋喃产生于中间体 2-硝基苯基叠氮化物 (21),它在反应条件下环化并失去氮.12环化,可能是因为喹唑啉酮环中更弱的亲核 N 原子不能引发 0 0(18) (19) 氮损失.三嗪(14)在乙酸-碘化钠存在下分解,使帕米诺-2-o-碘苯基喹唑啉的氢碘化物盐产率高.0-+/(28) +'0-111N(22)1,3-二芳基三氮烯在乙酸-叠氮化钠中的分解随后是t.1.c.在所有情况下,反应的主要产物是预期的叠氮基芳烃和氨基芳烃。1,S-双-五氯苯基三嗪在室温下顺利分解,得到4-氯苯基叠氮化物和4-氯苯胺。1,3-双-O-氰基苯基-L-甲基三氮需要更多的强迫(沸腾)条件,从而得到预期的2-叠氮苯甲腈和N-甲基邻氨基苯腈。不太令人满意的是1,3-双对硝基苯基三嗪的降解,它得到了4-硝基苯基叠氮化物和4-硝基苯胺以及至少五种其他化合物,推测是由二次分解形成的实验石油是指b.p.60-80“.1.r.光谱用Perkin-Elmer 257光谱仪记录KBr圆盘.2-叠氮苯甲酰亚胺(6a).--I,2,3-苯并三嗪-4(3H)-酮(0.6g)和叠氮化钠(4mol.equiv.)在乙酸(5ml)中煮沸1小时,然后混合物用水稀释。混合物的氯仿提取物在浓缩时提供胶质。用苯研磨得到2-叠氮基苯甲酰胺(95%),其由苯结晶为白针状,熔点135-136“(lit.,* 135-136”);vmax。3 378 和 3 170 (NH)、2 140 和 2 110 (NJ 和 1653 cm-l (CO)。将三嗪酮与过量的叠氮化钠(4摩尔当量)在75%乙醇水溶液、70%二甲基甲酰胺水溶液、二甲基亚砜中煮沸3小时时,无反应。同样,由3-取代的1,2,3-苯并三嗪-4(3H)-酮和叠氮化钠在沸腾乙酸中制备的有以下N-取代的2-叠氮基苯甲酰胺;N-苯基-(64(95y0),m.p.129-130“(泡腾)浅黄色薄片(来自乙醇水溶液)(发现:C,65.6;H,4.0;N,25.4。C13H1,N40需要C,65.5;H,4.2;N,25;。3%)、v、、3 290 (NH)、2 135 和 2 100 (NJ 和 1650cm-1 (CO);N-o-甲苯基-(6j)(88%),熔点100-101“,作为灰针(来自乙醇)(发现:C,66.9;H,4.6;N, 22.0.C14H,,N,0 需要 C, 66.7;H,4.8;N,22.2%);vmx.3 350 (NH)、2 130 和 2 100 (N3) 和 1668 cm-l (CO);N-o-硝基苯基-(6k)(95%),熔点150-152“(泡腾)作为青铜针(来自乙醇)(发现:C,54.9;H,3.0;N,24.9。C,,H,N,O,需要C,55.1;H,3.2;N, 24.7%),vmx 3 290 (NH), 2 138 (NJ, and 1 670 cm-l (CO);N-p-硝基苯基-(61)(93%),m.p.162-164“(泡腾)作为青铜针(来自乙醇)(发现:C,55.3;H,3.5;N, 24.7%),v,% 3 310 (NH), 2 135 (N3), and 1 665 cm-l (CO): N-2-氨基-3,4-二合子-4-氧代-6-甲基~yrimidi~-5-yl- (6m) (65%)m.p. 188-190“ (efferv. and .resolid.) as buff micro-rosettes(from ethanol) (Found: C, 50.7;H,3.6;N,34.2。C,,H,,-N,O,要求C,50.5;H,3.9;N, 34.4%), vmx 3 500-2 700 (结合NH, OH), 2 130 (NJ, and 1 650 cm-l (CO).3-烷基三嗪酮 ( 1 b-f) 和 3-芳基硝嗪酮 (lg 和 11) 通过煮沸含有 4 摩尔当量叠氮化钠的乙酸而保持不变.l2 P. A. S. Smith 和 J. H. Boyer, Org. Synth., 1951, 31, 14106 J.C.S.将1,2,3-苯并三嗪-4(3H)-酮(1.0g)在含有碘化钠(2mol.equiv.)的乙酸(10ml)中的溶液煮沸(1小时)并用水(20.ml)稀释。沉淀的碘苯甲酰胺(85%)产生晶体(来自乙醇水溶液),熔点182-184'(lit.,13 183“),vmx。3 350 和 3 190 (NH) 和 1 640 cm-l (CO)。同样,从适当的3-取代的1,2,3-苯并三嗪-4(3H)-酮制备的是以下N-取代的2-碘苯甲酰胺;N-苯基-(79 (85%), m.p.141-142“ (lit.,14 m.p. l42'), v,, 3 230 (NH) 和 1 646 cm-1(CO);N-p-硝基苯基-(71)(goyo),m.p.213-215O,为淡黄色棱柱(来自乙醇)(发现:C,42.6;H,2.7;N,7.4。C,,H,IN,O,需要C,42.4;H,2.5;N, 7.6%).2-o-A zidophenylbenzimidazole (9) .-A 苯并咪唑并[1,2-c][1,2,3]苯并三嗪l5(1.0 g)在含有叠氮化钠(4 mol.equiv.)的乙酸(10 ml)中的溶液煮沸(1 h),冷却,用水(10 ml)稀释。将产品萃取成氯仿,提取液蒸发。固体残留物,从轻石油中结晶,产生叠氮化物(85%)为棕色棱柱,m.p. 165-170“(递减),与真实样品相同(i.r.数据和热行为).102,4-二氨基-s-三嗪并[ lf2-b]吲唑Ze ( 13a) .-(i) k氨基-2-亚氨基-2H-s-三嗪并[ 1,2-c] [ 1,2,3]苯并三嗪 l1 ( 1 .将O g),-乙酸(10ml)和叠氮化钠(4mol.当量)煮沸(1小时),并用水(10ml)稀释混合物。沉淀的三嗪基吲唑(70%)与真实样品相同(i.r.和m.p.).11(ii)将2,4-二氨基-6-(2-叠氮基苯基)-s-三嗪11(1.0g)在乙酸(10ml)中的溶液煮沸(1小时)并用水稀释,得到相同的三嗪基吲唑(85%).2,4-二氨基-9-甲基Z-s-三嗪并[ 1,2-b]吲唑(13b) .-该三嗪基吲唑由4-氨基-2-亚氨基-lO-甲基-2H-s-三嗪并[1,2-c] [1,2,3]苯并三嗪11或2,4-二氨基-6-( 2-叠氮基-5-甲基苯基)-S-三嗪,收率分别为70%或80%.2,4-二氨基-9-溴-S-三嗪并[ 1,2-b]吲唑 (13c) 由4-氨基-1O-溴-2-亚氨基-2H-s-三嗪并[ 1,2-c][ 1,2,3]苯并三嗪l1in 含叠氮化钠的乙酸(78%)或仅由2,4-二氨基-6-( 2-叠氮基-5-溴苯基1)-s-三嗪11 (90%) 乙酸制备,与正品材料相同 (ix.) 11( 15) .-4-氨基-2-[2-(哌啶-L-基偶氮)苯基]喹唑啉 16(1.0g)用醋酸(10ml)与叠氮化钠(4mol.equiv.)煮沸15分钟。将混合物用水稀释并用氯仿萃取,蒸发氯仿层。理论上的残渣溶于苯和分馏的氧化铝柱中。第一个黄色条带,用苯洗脱,得到叠氮苯基ZquinazoZine(27y0),m.p.143-145'(再固)。(来自乙醇)(发现:C,64.4;H,P A 氨基-2-(2-叠氮苯基Z)喹唑啉啉S W. Wachter, Ber., 1893, 26, 1774.l4 W. Wachter, Ber., 1893, 26, 1744.15 L. L.Zaika 和 M. M. JouillC, J. 杂环化学, 1966, 3,444.3.9;N,32.2。C14Hl,N,要求C,64.1;H,3.8;N, 32.1y0),vmx.3 340 和 3 180 (NH) 以及 2 130 和 2 090 cm-l (NJ.叠氮苯基喹唑啉在沸腾的乙酸中的环化在1小时内完成。这些产物被鉴定为异构体吲唑喹唑啉类 ( 16) 和 (1 7),在 t.1.c 上被识别为强烈的荧光斑点。[在氧化铝(0.25 mm)上,以苯为展开溶剂],R p与真实样品相同.l?2-(2-叠氮苯Z)喹唑啉-4(3H)-酮(19) .-2-[2-(哌啶-l-基偶氮)苯基]喹唑啉-4(3H)-酮2(1.0g)和叠氮化钠(4摩尔当量)的混合物在乙酸(10ml)中煮沸1小时,并用水(10ml)稀释。沉淀的喹唑啉酮(0.5g)的熔点>300“(甲醇)(发现:C,64.1;H,3.5;N,26.3。C14H,N,0需要C,63.9;H,3.4;N, 26.6y0)、vmX.3 200-2 750(键合NH、OH)、2 140和2 100 (N3)和1680 cm-l4-氨基-2-(2-碘苯基)喹唑啉.-4-氨基-2-[2-(哌啶-l-基偶氮)苯基]喹唑啉(1.0 g)、碘化钠(2摩尔当量)和乙酸(10 ml)煮沸(2 h),并用水稀释混合物。由乙醇结晶为氢碘化物盐的喹唑啉,熔点230“(分解)(发现:C,35.5;H,2.3;N,8.7。C14H1,1N3,HI需要C,35.4;H,2.3,N,8.4%)。游离碱m.p.191-193“(来自乙醇)是通过用氨水碱化氢碘化物而形成的(发现:C,48.8;H,3.05;我,36.45;N,12.4。C14Hl,IN3 需要 C, 48.4;H,2.9;我,36.6;N,12.1%)。1,3-双-邻硝基~弈基三氮苯的分解-三氮苯(1.44 g)和叠氮化钠(1.3 g,4摩尔当量)在醋酸(15 ml)中煮沸1 h后,初次剧烈起泡消退。除去溶剂,用苯(20ml)研磨。滤去乙酸钠(1.7g),滤液在氧化铝柱上分馏(苯为洗脱液)。快速移动的淡黄色条带提供苯并呋喃 N-氧化物 (0.55 g)(Slyo),与真实标本相同 (i.r.).12 深黄色条带同样产生 2-硝基苯胺 (0.5 g,以下 1,3-二芳基三氮杂环己烷在含有叠氮化钠(4 mol.当量)的乙酸中类似地分解。产品(括号内)通过与t.1.c上的真实材料进行比较来识别。板 [硅胶 (0.25 mm) ;苯丙酮 (7 : 3)] 在 254 或 366 nm 处照射:1,3-双对氯苯基三嗪(4-氯苯基叠氮化物和 4-氯苯胺);1,3-双-O-氰基苯基-1-甲基三嗪(Z-叠氮基苯甲腈和N-甲基邻氨基苯腈);1,3-双对硝基苯基三嗪(4-叠氮基苯胺、4-硝基苯胺和五种不明产物)。和 S.R.C. 学生奖学金(向 C. P. T.)。(CO)83%)。我们感谢癌症研究运动的支持(至 [6/870 收稿日期,5 月 6 日,1976116 M. F. G. Stevens, J.C.S. Perkin I, 1974, 615.l7 M. F. G. Stevens, J. Chem. SOC. (C), 1967, 1096

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号