首页> 外文期刊>The Journal of Chemical Physics >Trapped-particle microrheology of active suspensions
【24h】

Trapped-particle microrheology of active suspensions

机译:活性悬浮液的俘获颗粒微流变学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In microrheology, the local rheological properties, such as the viscoelasticity of a complex fluid, are inferred from the free or forced motion of embedded colloidal probe particles. Theoretical machinery developed for forced-probe microrheology of colloidal suspensions focused on either constant-force (CF) or constant-velocity (CV) probes, while in experiments, neither the force nor the kinematics of the probe is fixed. More importantly, the constraint of CF or CV introduces a difficulty in the meaningful quantification of the fluctuations of the probe due to a thermodynamic uncertainty relation. It is known that, for a Brownian particle trapped in a harmonic potential well, the product of the standard deviations of the trap force and the particle position is dk(B)T in d dimensions, with k(B)T being the thermal energy. As a result, if the force (position) is not allowed to fluctuate, the position (force) fluctuation becomes infinite. To allow the measurement of fluctuations in theoretical studies, in this work, we consider a microrheology model in which the embedded probe is dragged along by a moving harmonic potential so that both its position and the trap force are allowed to fluctuate. Starting from the full Smoluchowski equation governing the dynamics of N hard active Brownian particles, we derive a pair Smoluchowski equation describing the dynamics of the probe as it interacts with one bath particle by neglecting hydrodynamic interactions among particles in the dilute limit. From this, we determine the mean and the variance (i.e., fluctuation) of the probe position in terms of the pair probability distribution. We then characterize the behavior of the system in the limits of both weak and strong trap. By taking appropriate limits, we show that our generalized model can be reduced to the well-studied CF or CV microrheology models.
机译:在微流变学中,局部流变特性,例如复杂流体的粘弹性,是从嵌入的胶体探针颗粒的自由或强制运动中推断出来的。为胶体悬浮液的强制探针微流变学而开发的理论机械集中在恒定力 (CF) 或恒速 (CV) 探针上,而在实验中,探针的力和运动学都不是固定的。更重要的是,由于热力学不确定性关系,CF或CV的约束给有意义地量化探针的波动带来了困难。众所周知,对于捕获在谐波势阱中的布朗粒子,陷阱力与粒子位置的标准偏差的乘积为d维dk(B)T,其中k(B)T为热能。因此,如果不允许力(位置)波动,则位置(力)波动变得无穷大。为了在理论研究中测量波动,在这项工作中,我们考虑了一种微流变学模型,其中嵌入的探头被移动的谐波势拖动,以便其位置和陷阱力都允许波动。从控制N个硬活性布朗粒子动力学的完整Smoluchowski方程开始,我们推导出一对Smoluchowski方程,该方程描述了探针与一个浴粒子相互作用时的动力学,忽略了稀释极限中粒子之间的流体动力学相互作用。由此,我们根据对概率分布确定探针位置的均值和方差(即波动)。然后,我们表征了系统在弱陷阱和强陷阱极限下的行为。通过采取适当的限制,我们表明我们的广义模型可以简化为经过充分研究的CF或CV微流变学模型。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号