首页> 外文期刊>The Journal of Chemical Physics >Strong-weak duality via Jordan-Wigner transformation: Using fermionic methods for strongly correlated su(2) spin systems
【24h】

Strong-weak duality via Jordan-Wigner transformation: Using fermionic methods for strongly correlated su(2) spin systems

机译:Strong-weak duality via Jordan-Wigner transformation: Using fermionic methods for strongly correlated su(2) spin systems

获取原文
获取原文并翻译 | 示例
           

摘要

The Jordan-Wigner transformation establishes a duality between su(2) and fermionic algebras. We present qualitative arguments and numerical evidence that when mapping spins to fermions, the transformation makes strong correlation weaker, as demonstrated by the Hartree-Fock approximation to the transformed Hamiltonian. This result can be rationalized in terms of rank reduction of spin shift terms when transformed to fermions. Conversely, the mapping of fermions to qubits makes strong correlation stronger, complicating its solution when one uses qubit-based correlators. The presence of string operators poses challenges to the implementation of quantum chemistry methods on classical computers, but these can be dealt with using established techniques of low computational cost. Our proof of principle results for XXZ and J(1)-J(2) Heisenberg (in 1D and 2D) indicates that the JW transformed fermionic Hamiltonian has reduced complexity in key regions of their phase diagrams and provides a better starting point for addressing challenging spin problems. Published under an exclusive license by AIP Publishing.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号