首页> 外文期刊>Transportation research, Part C. Emerging technologies >Comfortable and energy-efficient speed control of autonomous vehicles on rough pavements using deep reinforcement learning
【24h】

Comfortable and energy-efficient speed control of autonomous vehicles on rough pavements using deep reinforcement learning

机译:Comfortable and energy-efficient speed control of autonomous vehicles on rough pavements using deep reinforcement learning

获取原文
获取原文并翻译 | 示例
       

摘要

Rough pavements cause ride discomfort and energy inefficiency for road vehicles. Existing methods to address these problems are time-consuming and not adaptive to changing driving conditions on rough pavements. With the development of sensor and communication technologies, crowdsourced road and dynamic traffic information become available for enhancing driving performance, particularly addressing the discomfort and inefficiency issues by controlling driving speeds. This study proposes a speed control framework on rough pavements, envisioning the operation of autonomous vehicles based on the crowdsourced data. We suggest the concept of 'maximum comfortable speed' for representing the vertical ride comfort of oncoming roads. A deep reinforcement learning (DRL) algorithm is designed to learn comfortable and energyefficient speed control strategies. The DRL-based speed control model is trained using realworld rough pavement data in Shanghai, China. The experimental results show that the vertical ride comfort, energy efficiency, and computation efficiency increase by 8.22%, 24.37%, and 94.38%, respectively, compared to an optimization-based speed control model. The results indicate that the proposed framework is effective for real-time speed controls of autonomous vehicles on rough pavements.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号