首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Fluorine-Free Transparent Superhydrophobic Nanocomposite Coatings from Mesoporous Silica
【24h】

Fluorine-Free Transparent Superhydrophobic Nanocomposite Coatings from Mesoporous Silica

机译:Fluorine-Free Transparent Superhydrophobic Nanocomposite Coatings from Mesoporous Silica

获取原文
获取原文并翻译 | 示例
           

摘要

In recent decades, there has been a growing interest in the development of functional, fluorine-free superhydrophobic surfaces with improved adhesion for better applicability into real-world problems. Here, we compare two different methods, spin coating and aerosol-assisted chemical vapor deposition (AACVD), for the synthesis of transparent fluorine-free superhydrophobic coatings. The material was made from a nanocomposite of (3-aminopropyl)triethoxysilane (APTES) functional mesoporous silica nanoparticles and titanium cross-linked polydimethylsiloxane with particle concentrations between 9 to 50 wt %. The silane that was used to lower the surface energy consisted of a long hydrocarbon chain without fluorine groups to reduce the environmental impact of the composite coating. Both spin coating and AACVD resulted in the formation of superhydrophobic surfaces with advancing contact angles up to 168°, a hysteresis of 3°, and a transparency of 90% at 550 nm. AACVD has proven to produce more uniform coatings with concentrations as low as 9 wt %, reaching superhydrophobicity. The metal oxide cross-linking improves the adhesion of the coating to the glass. Overall, AACVD was the more optimal method to prepare superhydrophobic coatings compared to spin coating due to higher contact angles, adhesion, and scalability of the fabrication process.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号