首页> 外文期刊>Modeling Earth Systems and Environment >A comparison of existing transformation models to improve coordinate conversion between geodetic reference frames in Nigeria
【24h】

A comparison of existing transformation models to improve coordinate conversion between geodetic reference frames in Nigeria

机译:A comparison of existing transformation models to improve coordinate conversion between geodetic reference frames in Nigeria

获取原文
获取原文并翻译 | 示例
           

摘要

Efficient transformation parameters are key to effective geodetic operations between any systems. With the advancement in technology, an improved interaction between geodetic reference frames has been noticed irrespective of their inherent heterogeneous deformations and the intermittently present oversight that exist as a result of the conversion methodology. The spatial data captured using the Global Navigation Satellite System (GNSS) have a reference datum based on the World Geodetic System 1984 (WGS84) ellipsoid. These data usually require a transformation to a local projection with its ellipsoid and datum and vice versa. These geodetic operations are unavoidably vulnerable to data loss due to distortion, especially if the applied model is unsuitable for the transformation between reference frames. Therefore, the main aim of this study is to authenticate the existing set of parameters for the local and geocentric systems in Nigeria by assessing the efficacy of the Bursa Wolf (BW) and the Molodensky Badekas (MB) models. To this end, both models (BW and MB) are compared in this study and used in the development of the Helmerts seven transformation parameters between Minna datum (Clarke 1880) and WGS84 reference ellipsoids for a large region in Southern Nigeria. Results show that the sets of datum shift transformation parameters for both models (a scale factor with three sets of translational and rotational parameters), derived from the exercise of the BW and the MB models revealed a high degree of correlation between the expected and derived set of coordinates during the validation/testing phase using each set of models. The validation exercise was carried out on a total of seven points, which were not part of the original computations. These points were distributed across the region to provide a better framework and a higher confidence level. Overall, an improvement of 68% is observed in terms of the correlation between expected and derived coordinates in the validation points and from the obtained root mean square values. Ultimately, the MB model is preferred to the BW model evidently because the transformation involves a global-local reference frame.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号