...
首页> 外文期刊>Journal of Applied Physics >Particle-in-cell simulation of vacuum arc breakdown process of tip-to-plate electrode configuration
【24h】

Particle-in-cell simulation of vacuum arc breakdown process of tip-to-plate electrode configuration

机译:Particle-in-cell simulation of vacuum arc breakdown process of tip-to-plate electrode configuration

获取原文
获取原文并翻译 | 示例

摘要

The breakdown of a vacuum arc under high applied voltage conditions usually occurs on very short time and space scales, and a deep understanding of these processes is essential to extend the application of vacuum arc devices. To study the time and spatial evolution of plasma parameters during vacuum breakdown, a two-dimensional axial-symmetric particle-in-cell code with Monte Carlo collisions is used in the numerical simulation of tip-to-plate electrode configuration. In this simulation, in addition to considering the primary and secondary ionization of copper atoms, the excitation and de-excitation processes of copper atoms are also introduced so that the evolution of the light intensity of the vacuum arc in the different stages of breakdown processes can be obtained by tracking the de-excitation process of the atoms, which can be considered a virtual camera. In this way, the cathode radiance, anode light expansion, arc channel establishment, and arc quenching processes can be visually observed, and the trends are consistent with the images taken by Intensified Charge-Coupled Device (ICCD) and streak cameras reported in the literature. The analysis of the sputtering amount of the anode material due to the impact of the cathode plasma to the anode surface shows that the contribution of atoms, singly, and doubly ionized ions to the sputtering of the anode material varies at different stages of the discharge.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号