...
首页> 外文期刊>Chem Catalysis >Electrochemical CO2-to-ethylene conversion on metal-free covalent quinazoline network-derived electrodes
【24h】

Electrochemical CO2-to-ethylene conversion on metal-free covalent quinazoline network-derived electrodes

机译:无金属共价喹唑啉网络衍生电极上的电化学CO2-乙烯转化

获取原文
获取原文并翻译 | 示例

摘要

Electrocatalytic CO2 reduction to produce multi-carbon (C_(2+)) chemicals represents a highly attractive route for CO2 utilization, particularly CO2-to-ethene conversion toward fuel generation from renewable resources. However, state-of-the-art electrocatalysts are mainly limited to Cu-derived electrodes. Herein, metal-free nanoporous and deflect-abundant covalent quinazoline network (CQN)-derived electrocatalysts displayed promising catalytic efficiency and selectivity in CO2-to-ethene conversion. The highest Faradaic efficiency of ethene production (FEC2H4) achieved 61.1 at 1.07 V (versus reversible hydrogen electrode RHE) by modified CQN-derived electrodes, surpassing the current metal-free systems in CO2-to-ethene conversion. Structural characterization and theoretical calculation underscored the critical role of deflect creation and the periphery nitrogen species in the tricycloquinazoline (TCQ) units in CO2 adsorption, hydro-genation, and subsequent C-C coupling reaction to afford ethene. The achievements made in this work provide an alternative platform of metal-free nanocatalysts toward CO2-to-C_(2+) products via electrore-duction by leveraging the highly porous, extensively conjugated, and aza-fused ring-abundant two-dimensional networks.
机译:电催化CO2还原生产多碳(C_(2+))化学品是CO2利用的极具吸引力的途径,特别是CO2转化为乙烯,用于可再生资源的燃料生产。然而,最先进的电催化剂主要局限于铜衍生电极。本文中,无金属纳米多孔和偏转丰富的共价喹唑啉网络(CQN)衍生电催化剂在CO2-乙烯转化中表现出良好的催化效率和选择性。在1.07 V(相对于可逆氢电极[RHE])下,改良的CQN衍生电极的乙烯生产效率(FEC2H4)最高,超过了目前无金属系统的CO2-乙烯转化率。结构表征和理论计算强调了三环喹唑啉 (TCQ) 单元中偏转产生和外围氮物种在 CO2 吸附、加氢妊娠和随后的 C-C 偶联反应中得到乙烯的关键作用。本研究成果利用高度多孔、广泛共轭和氮杂稠合环丰盈的二维网络,为无金属纳米催化剂通过电还原法制备CO2制C_(2+)产物提供了另一种平台。

著录项

  • 来源
    《Chem Catalysis》 |2023年第2期|共14页
  • 作者单位

    Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;

    Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号