首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Thermally Driven Interfacial Degradation between Li7La3Zr2O12 Electrolyte and LiNi0.6Mn0.2Co0.2O2 Cathode
【24h】

Thermally Driven Interfacial Degradation between Li7La3Zr2O12 Electrolyte and LiNi0.6Mn0.2Co0.2O2 Cathode

机译:Li7La3Zr2O12电解液与LiNi0.6Mn0.2Co0.2O2正极的热驱动界面降解

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Solid-state batteries offer higher energy density and enhanced safety compared to the present lithium-ion batteries using liquid electrolytes. A challenge to implement them is the high resistances, especially at the solid electrolyte interface with the cathode. Sintering at elevated temperature is needed in order to get good contact between the ceramic solid electrolyte and oxide cathodes and thus to reduce contact resistances. Many solid electrolyte and cathode materials react to form secondary phases. It is necessary to find out which phases arise as a result of interface sintering and evaluate their effect on electrochemical properties. In this work, we assessed the interfacial reactions between LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2) (NMC622) and Li_(7)La_(3)Zr_(2)O_(12) (LLZO) as a function of temperature in air. We prepared model systems by depositing thin-film NMC622 cathode layers on LLZO pellets. The thin-film cathode approach enabled us to use interface-sensitive techniques such as X-ray absorption spectroscopy in the near-edge as well as the extended regimes and identify the onset of detrimental reactions. We found that the Ni and Co chemical environments change already at moderate temperatures, on-setting from 500 °C and becoming especially prominent at 700 °C. By analyzing spectroscopy results along with X-ray diffraction, we identified Li_(2)CO_(3), La_(2)Zr_(2)O_(7), and La(Ni,Co)O_(3) as the secondary phases that formed at 700 °C. The interfacial resistance for Li transfer, measured by electrochemical impedance spectroscopy, increases significantly upon the onset and evolution of the detected interface chemistry. Our findings suggest that limiting the bonding temperature and avoiding CO_(2) in the sintering environment can help to remedy the interfacial degradation.
机译:与目前使用液体电解质的锂离子电池相比,固态电池具有更高的能量密度和更高的安全性。实现它们的一个挑战是高电阻,特别是在固体电解质与阴极的界面处。为了在陶瓷固体电解质和氧化物阴极之间获得良好的接触,从而降低接触电阻,需要在高温下烧结。许多固体电解质和阴极材料反应形成二相。有必要找出界面烧结产生的相,并评估它们对电化学性能的影响。在这项工作中,我们评估了LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2) (NMC622) 和 Li_(7)La_(3)Zr_(2)O_(12) (LLZO) 之间的界面反应作为空气温度的函数。我们通过在LLZO颗粒上沉积薄膜NMC622阴极层来制备模型系统。薄膜阴极方法使我们能够在近边缘和扩展状态中使用界面敏感技术,例如X射线吸收光谱,并识别有害反应的发生。我们发现,Ni和Co的化学环境在中等温度下已经发生了变化,从500°C开始,在700°C时变得尤为突出。 通过分析光谱结果和X射线衍射,我们确定了Li_(2)CO_(3)、La_(2)Zr_(2)O_(7)和La(Ni,Co)O_(3)是在700 °C下形成的次相。通过电化学阻抗谱测量的Li转移界面电阻随着检测到的界面化学性质的发生和演变而显着增加。我们的研究结果表明,在烧结环境中限制键合温度并避免CO_(2)有助于补救界面降解。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号