...
首页> 外文期刊>Journal of Materials Science >Optimisation of processing conditions during CVD growth of 2D WS2 films from a chloride precursor
【24h】

Optimisation of processing conditions during CVD growth of 2D WS2 films from a chloride precursor

机译:Optimisation of processing conditions during CVD growth of 2D WS2 films from a chloride precursor

获取原文
获取原文并翻译 | 示例

摘要

Monolayer tungsten disulphide (WS2) is a direct band gap semiconductor which holds promise for a wide range of optoelectronic applications. The large-area growth of WS2 has previously been successfully achieved using a W(CO)(6) precursor, however, this is flammable and a potent source of carbon monoxide (CO) upon decomposition. To address this issue, we have developed a process for the wafer-scale growth of monolayer WS2 from a tungsten hexachloride (WCl6) precursor in a commercial cold-wall CVD reactor. In comparison to W(CO)(6), WCl6 is less toxic and less reactive and so lends itself better to the large-scale CVD growth of 2D layers. We demonstrate that a post-growth H2S anneal can lead to a dramatic improvement in the optical quality of our films as confirmed by photoluminescence (PL) and Raman measurements. Optimised films exhibit PL exciton emission peaks with full width at half maximum of 51 +/- 2 meV, comparable to other state-of-the-art methods. We demonstrate that our WS2 films can be readily transferred from the sapphire growth substrate to a Si/SiO2 target substrate with no detectable degradation in quality using a polystyrene support layer. Our approach represents a promising step towards the industrial-scale fabrication of p-n junctions, photodetectors and transistors based on monolayer WS2.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号