...
首页> 外文期刊>Global change biology >Environmental controls on the light use efficiency of terrestrial gross primary production
【24h】

Environmental controls on the light use efficiency of terrestrial gross primary production

机译:陆地初级生产总量光利用效率的环境控制

获取原文
获取原文并翻译 | 示例

摘要

Abstract Gross primary production (GPP) by terrestrial ecosystems is a key quantity in the global carbon cycle. The instantaneous controls of leaf‐level photosynthesis are well established, but there is still no consensus on the mechanisms by which canopy‐level GPP depends on spatial and temporal variation in the environment. The standard model of photosynthesis provides a robust mechanistic representation for C3 species; however, additional assumptions are required to “scale up” from leaf to canopy. As a consequence, competing models make inconsistent predictions about how GPP will respond to continuing environmental change. This problem is addressed here by means of an empirical analysis of the light use efficiency (LUE) of GPP inferred from eddy covariance carbon dioxide flux measurements, in situ measurements of photosynthetically active radiation (PAR), and remotely sensed estimates of the fraction of PAR (fAPAR) absorbed by the vegetation canopy. Focusing on LUE allows potential drivers of GPP to be separated from its overriding dependence on light. GPP data from over 100 sites, collated over 20 years and located in a range of biomes and climate zones, were extracted from the FLUXNET2015 database and combined with remotely sensed fAPAR data to estimate daily LUE. Daytime air temperature, vapor pressure deficit, diffuse fraction of solar radiation, and soil moisture were shown to be salient predictors of LUE in a generalized linear mixed‐effects model. The same model design was fitted to site‐based LUE estimates generated by 16 terrestrial ecosystem models. The published models showed wide variation in the shape, the strength, and even the sign of the environmental effects on modeled LUE. These findings highlight important model deficiencies and suggest a need to progress beyond simple “goodness of fit” comparisons of inferred and predicted carbon fluxes toward an approach focused on the functional responses of the underlying dependencies.
机译:摘要 陆地生态系统初级生产总量(GPP)是全球碳循环中的关键量。叶片水平光合作用的瞬时控制已经很成熟,但对于冠层水平GPP依赖于环境中的空间和时间变化的机制仍未达成共识。光合作用的标准模型为 C3 物种提供了稳健的机理表示;然而,需要额外的假设才能从叶子“放大”到树冠。因此,相互竞争的模型对GPP将如何应对持续的环境变化做出了不一致的预测。本文通过对涡度协方差二氧化碳通量测量、光合有效辐射(PAR)的原位测量以及植被冠层吸收的PAR分数(fAPAR)的遥感估计来推断GPP的光利用效率(LUE)来解决这个问题。关注 LUE 可以将 GPP 的潜在驱动因素与其对光的压倒性依赖区分开来。从FLUXNET2015数据库中提取了来自100多个地点的GPP数据,这些数据经过20多年的整理,位于一系列生物群落和气候区,并与遥感fAPAR数据相结合,以估计每日LUE。在广义线性混合效应模型中,白天气温、蒸气压不足、太阳辐射漫射分数和土壤湿度被证明是LUE的显著预测因子。将相同的模型设计拟合到16个陆地生态系统模型生成的基于地点的LUE估计值。已发表的模型在形状、强度甚至环境影响的迹象上都显示出很大的差异。这些发现突出了重要的模型缺陷,并表明需要超越推断和预测碳通量的简单“拟合优度”比较,转向一种专注于潜在依赖关系的功能响应的方法。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号