首页> 外文期刊>Leukemia and lymphoma >Investigating the potential molecular players and therapeutic drug molecules in carfilzomib resistant multiple myeloma by comprehensive bioinformatics analysis
【24h】

Investigating the potential molecular players and therapeutic drug molecules in carfilzomib resistant multiple myeloma by comprehensive bioinformatics analysis

机译:Investigating the potential molecular players and therapeutic drug molecules in carfilzomib resistant multiple myeloma by comprehensive bioinformatics analysis

获取原文
获取原文并翻译 | 示例
           

摘要

Multiple myeloma (MM), second most common hematological malignancy, still remains beyond cure because of acquirement of drug resistance. Proteasome inhibitor such as carfilzomib (Cfz) therapy which has been used as one of the key therapies against MM recently, is obstructed by the incidence of Cfz resistance. The underlying mechanism of this acquired Cfz resistance in MM is very little understood. Therefore, the current study was aimed to investigate the differentially expressed genes (DEGs), associated micro RNAs (miRNAs), and transcription factors (TFs) from the microarray datasets of Cfz resistant and Cfz sensitive MM cell lines, obtained from Gene Expression Omnibus (GEO) database. DEGs were detected using GEO2R tool from two datasets and common DEGs were identified through Venn diagram. Gene ontology (GO) and pathway enrichment analysis were performed on DAVID database. Through STRING database and Cytoscape tool, protein-protein interaction (PPI) network of DEGs was constructed. Genetic alterations in DEGs were investigated using COSMIC database. Interaction network between DEGs and miRNAs as well as TFs were obtained and constructed by using mirDIP, TRRUST, and miRNet tools. Drug gene interaction analysis was performed to identify potential drug molecules on DGIdb tool. Several common DEGs were identified in Cfz resistant MM. PDGF, VEGF, and Wnt signaling pathways were significantly enriched and might be involved in MM progression. miRNA analysis identified hsa-mir-124-3p, hsa-mir-26a-5p that can target DEGs. Various drug molecules such as dabrafenib, vemurafenib, and venetoclax that could potentially attenuate the MM pathophysiology, were detected. The entire study might provide a new understanding about the Cfz resistance in MM.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号