...
首页> 外文期刊>TERI information digest on energy and environment: TIDEE >Energy, exergy, and environmental analyses of renewable hydrogen production through plasma gasification of microalgal biomass
【24h】

Energy, exergy, and environmental analyses of renewable hydrogen production through plasma gasification of microalgal biomass

机译:Energy, exergy, and environmental analyses of renewable hydrogen production through plasma gasification of microalgal biomass

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, energy, exergy, and environmental (3E) analyses of a plasma-assisted hydrogen production process from microalgae is investigated. Four different microalgal biomass fuels, namely, raw microalgae (RM) and three torrefied microalgal fuels (TM200, TM250, and TM300), are used as the feedstock for steam plasma gasification to generate syngas and hydrogen. The effects of steam-to-biomass (S/B) ratio on the syngas and hydrogen yields and energy and exergy efficiencies of plasma gasification (η_(En;PG), η_(Ex;PG)) and hydrogen production (η_(En;H2),η_(Ex;H2)) are taken into account. Results show that the optimal S/B ratios of RM,TM200,TM250, andTM300 are 0.354, 0.443, 0.593, and 0.760, respectively, occurring at the carbon boundary points (CBPs), where the maximum values of η_(En;PG) η_(Ex;PG),η_(En;H2), and η_(Ex;H2) are also achieved. At CBPs, torrefied microalgae as feedstock lower the η_(En;PG) η_(Ex;PG), η_(En;H2), and η_(Ex;H2) because of their improved calorific value after undergoing torrefaction and the increased plasma energy demand compared to the RM. However, beyond CBPs the torrefied feedstock displays better performance. A comparative life cycle analysis indicates that TM300 exhibits the highest greenhouse gases (GHG) emissions and the lowest net energy ratio (NER) due to the indirect emissions associated with electricity consumption.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号