首页> 外文期刊>International journal of hydrogen energy >Study of cell voltage uniformity of proton exchange membrane fuel cell stack with an optimized artificial neural network model
【24h】

Study of cell voltage uniformity of proton exchange membrane fuel cell stack with an optimized artificial neural network model

机译:Study of cell voltage uniformity of proton exchange membrane fuel cell stack with an optimized artificial neural network model

获取原文
获取原文并翻译 | 示例
       

摘要

The cell voltage uniformity of the proton exchange membrane fuel cell stack, which may consist of tens or hundreds of cells in series, plays a significant role in the stack's lifetime and performance. But it is challenging to predict the multi-cell voltages and the uniformity with a physics-based model due to complex stack geometry and huge computation efforts. In this work, we develop an artificial neural network model to estimate the steady-state cell voltage distributions of a 60 kW 140-cell stack. The optimized and well-trained model can efficiently reproduce the 140-cell voltages at different operating conditions with the error of less than 2 mV. The increased cathode gas pressure improves the cell voltage consistency and stack performance, while the voltage uniformity worsens with ascending load current. The efficient model prediction of cell voltages is beneficial for accurate evaluation of fuel cell performance, health state, and reliability.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号