...
首页> 外文期刊>Computational Mechanics: Solids, Fluids, Fracture Transport Phenomena and Variational Methods >Machine learning meta-models for fast parameter identification of the lattice discrete particle model
【24h】

Machine learning meta-models for fast parameter identification of the lattice discrete particle model

机译:用于快速识别晶格离散粒子模型参数的机器学习元模型

获取原文
获取原文并翻译 | 示例

摘要

When simulating the mechanical behavior of complex materials, the failure behavior is strongly influenced by the internal structure. To account for such dependence, models at the length scale of material heterogeneity are required. These models involve multiple material parameters and are computationally intensive. Experimental data are needed to identify model parameters, and the highly nonlinear nature of the constitutive equations results in a challenging inverse problem. Direct inverse analysis (DIA) seeks the best parameter estimates by minimizing a well-defined objective function through an iterative optimization scheme. However, it is time-consuming, as just a single simulation is computationally costly. Another approach uses a machine learning (ML) model built from the complete mechanistic model, combined with an appropriate optimization algorithm. ML reduces the computational cost and enables parameter selection and feature importance as a by-product. This manuscript presents a comparative study between DIA and ML-based inverse analysis using the lattice discrete particle model, a state-of-the-art model simulating concrete at the coarse aggregate level. The study focuses on three mechanical tests: unconfined compression, hydrostatic, and tensile fracture. Experimental data was taken from the literature and augmented to form a consistent data set for a given mix design. Five different ML methods were explored, and results were compared with those from DIA. The two inverse analysis methods were compared in terms of goodness of fit and computational cost. Results confirm the validity of the identification procedure and show that inverse analysis based on ML reduces the computational cost by various orders of magnitude.
机译:在模拟复杂材料的力学行为时,失效行为受内部结构的强烈影响。为了解释这种依赖性,需要在材料异质性长度尺度上建立模型。这些模型涉及多个材料参数,并且计算量很大。需要实验数据来识别模型参数,而本构方程的高度非线性性质导致了一个具有挑战性的逆问题。直接逆分析 (DIA) 通过迭代优化方案最小化定义明确的目标函数来寻求最佳参数估计。然而,这很耗时,因为仅一次模拟就具有很高的计算成本。另一种方法是使用基于完整机理模型构建的机器学习 (ML) 模型,并结合适当的优化算法。ML 降低了计算成本,并实现了参数选择和特征重要性作为副产品。本文介绍了使用晶格离散颗粒模型对 DIA 和基于 ML 的逆分析的比较研究,这是一种在粗骨料水平上模拟混凝土的最新模型。该研究侧重于三种力学测试:无侧限压缩、静水压和拉伸断裂。实验数据取自文献并加以形成给定混合设计的一致数据集。探索了五种不同的ML方法,并将结果与DIA的结果进行了比较。比较了两种逆向分析方法的拟合优度和计算成本。结果证实了识别程序的有效性,并表明基于ML的逆向分析将计算成本降低了多个数量级。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号