...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Colloidal Synthesis of Multinary Alkali-Metal Chalcogenides Containing Bi and Sb: An Emerging Class of I–V–VI2 Nanocrystals with Tunable Composition and Interesting Properties
【24h】

Colloidal Synthesis of Multinary Alkali-Metal Chalcogenides Containing Bi and Sb: An Emerging Class of I–V–VI2 Nanocrystals with Tunable Composition and Interesting Properties

机译:Colloidal Synthesis of Multinary Alkali-Metal Chalcogenides Containing Bi and Sb: An Emerging Class of I–V–VI2 Nanocrystals with Tunable Composition and Interesting Properties

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The growth mechanism and synthetic controls for colloidal multinary metal chalcogenide nanocrystals (NCs) involving alkali metals and the pnictogen metals Sb and Bi are unknown. Sb and Bi are prone to form metallic nanocrystals that stay as impurities in the final product. Herein, we synthesize colloidal NaBi1–x Sb x Se2–y S y NCs using amine–thiol–Se chemistry. We find that ternary NaBiSe2 NCs initiate with Bi0 nuclei and an amorphous intermediate nanoparticle formation that gradually transforms into NaBiSe2 upon Se addition. Furthermore, we extend our methods to substitute Sb in place of Bi and S in place of Se. Our findings show the initial quasi-cubic morphology transforms into a spherical shape upon increased Sb substitution, and the S incorporation promotes elongation along the direction. We further investigate the thermoelectric transport properties of the Sb-substituted material displaying very low thermal conductivity and n-type transport behavior. Notably, the NaBi0.75Sb0.25Se2 material exhibits an ultralow thermal conductivity of 0.25 W·m–1·K–1 at 596 K with an average thermal conductivity of 0.35 W·m–1·K–1 between 358 and 596 K and a ZT max of 0.24.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号