首页> 外文期刊>International Journal of Fracture >Finite Fracture Mechanics extension to dynamic loading scenarios
【24h】

Finite Fracture Mechanics extension to dynamic loading scenarios

机译:Finite Fracture Mechanics extension to dynamic loading scenarios

获取原文
获取原文并翻译 | 示例
           

摘要

The coupled criterion of Finite Fracture Mechanics (FFM) has already been successfully applied to assess the brittle failure initiation in cracked and notched structures subjected to quasi-static loading conditions. The FFM originality lies in addressing failure onset through the simultaneous fulfilment of a stress requirement and the energy balance, both computed over a finite distance ahead of the stress raiser. Accordingly, this length results to be a structural parameter, thus able to interact with the geometry under investigation. This work aims at extending the FFM failure criterion to dynamic loadings. To this end, the general requisites of a proper dynamic failure criterion are first shortlisted. The novel Dynamic extension of FFM (DFFM) is then put forward assuming the existence of a material time interval that is related to the coalescence period of microcracks upon macroscopic failure. On this basis, the DFFM model is investigated in case a one-to-one relation between the external solicitation and both the dynamic stress field and energy release rate holds true. Under such a condition, the DFFM is also validated against suitable experimental data on rock materials from the literature and proven to properly catch the increase of the failure load as the loading rate rises, thus proving to be a novel technique suitable for modelling the rate dependence of failure initiation in brittle and quasi-brittle materials.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号