...
首页> 外文期刊>International journal of hydrogen energy >Multi-objective optimization of a clean combined system based gasifier-solid oxide fuel cell
【24h】

Multi-objective optimization of a clean combined system based gasifier-solid oxide fuel cell

机译:Multi-objective optimization of a clean combined system based gasifier-solid oxide fuel cell

获取原文
获取原文并翻译 | 示例

摘要

Biomass can be used as fuel of fuel cells by conducting thermochemical process such as biomass gasification. In this study, the required fuel of a solid oxide fuel cell was supplied through pine gasification in a gasifier reactor. The purpose of this study was provided an appropriate configuration to a co-generation system produced heat and power and the state with maximum heat and power production and minimum carbon dioxide emission was obtained. The outputs were power, heat, and CO2 emission investigated with respect to steam to biomass ratio of gasification and current density and fuel utilization factor of solid oxide fuel cell. The results indicated that fuel utilization factor contributed the most on power and hot water with shares of 73.64% and 47.27%, respectively. However, current density had the highest influence on carbon dioxide emission with a share of 83.41%. Parametric analysis illustrated that increasing fuel utilization factor remarkably enhanced the power production and mitigated hot water production. A considerable reduction was observed in carbon dioxide emission by increasing current density. Single-objective and multi-objective optimizations revealed that steam to biomass ratio of 2, 4600 A/m(2) of current density, 0.77 of utilization factor are the optimum states. Power production of 196.8 kW, hot water production of 1203 g/s, and carbon dioxide emission of 1261 kg/MW.h were the outputs of the optimum state. (C) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号