...
首页> 外文期刊>Medical Physics >Machine learning based oxygen and carbon concentration derivation using dual‐energy CT for PET‐based dose verification in proton therapy
【24h】

Machine learning based oxygen and carbon concentration derivation using dual‐energy CT for PET‐based dose verification in proton therapy

机译:使用双能 CT 进行基于机器学习的氧和碳浓度推导,用于质子治疗中基于 PET 的剂量验证

获取原文
获取原文并翻译 | 示例

摘要

Purpose Online dose verification based on proton‐induced positron emitters requires high accuracy in the assignment of elemental composition (e.g., C and O). We developed a machine learning framework for deriving oxygen and carbon concentration based on dual‐energy CT (DECT). Methods Digital phantoms at the head site were constructed based on single‐energy CT (SECT) and stoichiometric calibration. DECT images (80 and 140?kVp) were synthesized using two methods: (1) theoretical CT numbers with Gaussian noise (method 1) and (2) forward/backward image reconstruction with poly‐energetic energy spectrum and Poisson noise modeled (method 2). Two architectures of convolutional neural networks, UNet and ResNet, were investigated to map from DECT images to C/O weights. Four cases (UNet‐1: Method 1+UNet, ResNet‐1: Method 1+ResNet, UNet‐2: Method 2+UNet, and ResNet‐2: Method 2 +ResNet) were tested for different tissue types and different noise levels. Monte‐Carlo simulation was employed to identify the impact of fluctuation in oxygen and carbon concentration on activity/dose distribution. Results When no noise is present, all four cases are able to obtain <2 mean absolute errors and <4 root mean square error (RMSE). For the worst image quality (e.g., lowest image SNR), the RMSE for O among all tissue types is 3.02 (UNet‐1), 4.46 (ResNet‐1), 4.38 (UNet‐2), and 6.31 (ResNet‐2), respectively. For UNet‐1 and ResNet‐1, the model performed slightly better in terms of RMSE for skeletal tissue than soft tissues. Such a trend is not observed for UNet‐2 and ResNet‐2. With regard to the comparison between UNet and ResNet, different accuracy and noise immunity are observed. The activity profiles exhibit 3–5 difference in terms of mean relative error between the ground truth and machine learning outcome. Conclusion We explored the feasibility of a machine learning framework to derive elemental concentration of oxygen and carbon based on DECT images. Two machine learning models, UNet and ResNet, are able to utilize spatial correlation and obtain accurate carbon and oxygen concentration. This study lays a foundation for us to apply the proposed approach to clinical DECT images.
机译:目的 基于质子诱导的正电子发射器的在线剂量验证需要高精度地分配元素组成(例如,C 和 O)。我们开发了一个机器学习框架,用于基于双能CT(DECT)推导氧和碳浓度。方法 基于单能CT(SECT)和化学计量定标方法构建头部站点数字模型。使用两种方法合成DECT图像(80和140?kVp):(1)理论CT数与高斯噪声(方法1)和(2)具有多能能谱和泊松噪声建模的前向/后向图像重建(方法2)。研究了卷积神经网络的两种架构,UNet 和 ResNet,以从 DECT 图像映射到 C/O 权重。对4例(UNet-1:方法1+UNet、ResNet-1:方法1+ResNet、UNet-2:方法2+UNet和ResNet-2:方法2+ResNet)进行了不同组织类型和不同噪声水平的测试。采用蒙特卡罗模拟来识别氧和碳浓度波动对活性/剂量分布的影响。结果 当无噪声时,4种工况均能获得<2%的平均绝对误差和<4%的均方根误差(RMSE)。对于最差的图像质量(例如,最低的图像信噪比),所有组织类型中 O 的 RMSE 分别为 3.02% (UNet-1)、4.46% (ResNet-1)、4.38% (UNet-2) 和 6.31% (ResNet-2)。对于 UNet-1 和 ResNet-1,该模型在骨骼组织的 RMSE 方面的表现略好于软组织。在 UNet-2 和 ResNet-2 中没有观察到这种趋势。关于UNet和ResNet之间的比较,观察到不同的精度和抗噪性。活动概况在地面实况和机器学习结果之间的平均相对误差方面表现出 3%-5% 的差异。结论 探讨了基于DECT图像的机器学习框架推导氧和碳元素浓度的可行性。UNet 和 ResNet 这两个机器学习模型能够利用空间相关性并获得准确的碳和氧浓度。本研究为我们将所提出的方法应用于临床DECT图像奠定了基础。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号