...
首页> 外文期刊>Combinatorial chemistry & high throughput screening >Synthesis, Molecular Docking, c-Met Inhibitions of 2,2,2-Trichloroethylidene- cyclohexane-1, 3-dione Derivatives Together with their Application as Target SARS-CoV-2 main Protease (Mpro) and as Potential anti-COVID-19
【24h】

Synthesis, Molecular Docking, c-Met Inhibitions of 2,2,2-Trichloroethylidene- cyclohexane-1, 3-dione Derivatives Together with their Application as Target SARS-CoV-2 main Protease (Mpro) and as Potential anti-COVID-19

机译:Synthesis, Molecular Docking, c-Met Inhibitions of 2,2,2-Trichloroethylidene- cyclohexane-1, 3-dione Derivatives Together with their Application as Target SARS-CoV-2 main Protease (Mpro) and as Potential anti-COVID-19

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Background: The lack of anti-COVID-19 treatment to date warrants urgent research into potential therapeutic targets. Virtual drug screening techniques enable the identification of novel compounds that target the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Main Protease (M pro ). Objective: The binding of the halogenated compounds to M pro may inhibit the replication and transcription of SARS-CoV-2 and, ultimately, stop the viral life cycle. In times of dire need for anti- COVID-19 treatment, this study lays the groundwork for further experimental research to investigate these compounds' efficacy and potential medical uses to treat COVID-19. Methods: New heterocyclic compounds were synthesized through the first reaction of cyclohexane- 1, 3-dione (1a) or dimedone (1b) with trichloroacetonitrile (2) to give the 2,2,2-trichloroethylidene) cyclohexane-1,3-dione derivatives 3a and 3b, respectively. The latter compounds underwent a series of heterocyclization reactions to produce biologically active compounds. Results: Novel compounds, including fused thiophene, pyrimidine and pyran derivatives, were synthesized and tested against human RNA N7-MTase (hRNMT) and selected viral N7-MTases such as SARS-CoV nsp14 and Vaccinia D1-D12 complex to evaluate their specificity and their molecular modeling was also studied in the aim of producing anti-COVID-19 target molecules. Conclusion: The results showed that compounds 10a, 10b, 10c, 10e, 10f, 10g and 10h showed high % inhibitions against SARs-Covnsp 14. Whereas compounds 5a, 7a, 8b, 10a, 10b, 10c and 10i showed high inhibitions against hRNMT. This study explored the binding affinity of twenty-two halogenated compounds to the SARS-CoV-2 M Pro and discovered fifteen compounds with higher binding affinity than Nelfinavir, of which three showed remarkable results. c-Met kinase inhibitions of 10a, 10f, 10g and 10h showed that all compounds exhibited higher inhibitions than the reference Foretinib.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号