...
首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Experiment, Optimization, and Design of Electromagnetic Track Brake for High-Speed Railways System
【24h】

Experiment, Optimization, and Design of Electromagnetic Track Brake for High-Speed Railways System

机译:Experiment, Optimization, and Design of Electromagnetic Track Brake for High-Speed Railways System

获取原文
获取原文并翻译 | 示例

摘要

To enhance braking force and control convenience of high-speed railway systems, this paper proposes a new electromagnetic track brake, and the corresponding design, optimization, and experimental test are implemented. The proposed track brake is longitudinal-axis magnetic circuits excited by multiple coils electromagnets, and the pole shoes are extending outward. A preliminary design of an electromagnetic track brake is developed, including iron core height, iron core width, iron core gap, excitation ampere-turn, coil arrangement form, coil thickness, and preliminary height of single-layer coil. The electromagnet number and pole shoe gap are optimized through three-dimensional electromagnetic simulation comparisons. The final design of the electromagnetic track brake is determined, including iron core length, copper wire diameter, coil turn, and final height of single-layer coil. Experimental verification of electromagnetic attractive force is performed through prototype tests, and the newly developed electromagnetic track brake can enhance electromagnetic braking deceleration by 39%.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号