...
首页> 外文期刊>Hormone and Metabolic Research >Genetic and Functional Analyses of the Novel KLF11 Pro193Thr Variant in a Three-Generation Family with MODY7
【24h】

Genetic and Functional Analyses of the Novel KLF11 Pro193Thr Variant in a Three-Generation Family with MODY7

机译:Genetic and Functional Analyses of the Novel KLF11 Pro193Thr Variant in a Three-Generation Family with MODY7

获取原文
获取原文并翻译 | 示例
           

摘要

KLF11 regulates insulin gene expression through binding to the insulin promoter and has been reported as a causative gene for maturity-onset diabetes of the young 7 (MODY7). Here, we report a novel KLF11 variant associated with a three-generation family with early childhood-onset diabetes and explore its clinical and functional characteristics. The three-generational pedigree contains five patients affected by diabetes. The pathogenic variant identified by whole-exome sequencing was further confirmed by Sanger sequencing and pedigree verification. Luciferase reporter assays and glucose-stimulated insulin secretion were used to examine whether the KLF11 variant binds to the insulin promoter and regulate insulin secretion in vitro. The proband, his son, and his uncle exhibited hyperglycemia at ages 32, 13 and 71 years, respectively. All three patients showed characteristics of metabolic syndrome (obesity, dyslipidemia, and diabetes), but the insulin secretion of islet β-cells was impaired. A novel heterozygous missense variant, c.577?C>A (p.Pro193Thr) of the KLF11 gene was detected in all three patients. This variant co-segregates with the diabetes phenotype, consistent with an autosomal dominant disorder. The identified KLF11 p.Pro193Thr variant drastically decreased the transcriptional activity of KLF11, as demonstrated by luciferase reporter assay. Functional analyses revealed that the KLF11 Pro193Thr variant inhibited glucose-stimulated insulin secretion. We identified a novel KLF11 Pro193Thr variant in a three generation family with MODY7. These findings shed light on the molecular mechanisms underlying the pathogenesis of MODY7 and expand the genotype and clinical spectrum of MODY7.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号